Suffix arrays

String Algorithms
The suffix array

Remember: suffix \(j \) of \(x = x[1..n] \) is \(x[j..n] \)

Suffix array \(SA \) of \(x \) is an array of \(n \) integers such that:

\[
SA[i] = j \text{ implies that suffix } j \text{ of } x \text{ has rank } i \text{ in the lexicographical ordering of all suffixes of } x
\]

... assumes an ordered alphabet ...

... consumes \(|\text{int|}\cdot n \) bytes, usually \(4n \) bytes ...
An example

Mississippi
1: mississippi
2: ississippi
3: ssissippi
4: sissippi
5: issippii
6: ssippii
7: sippii
8: ippi
9: ppi
10: pi
11: i
An example

Mississippi

1: mississippi
2: ississippi
3: ssissippi
4: sissippi
5: issippi
6: ssippi
7: sippi
8: ippi
9: ppi
10: pi
11: i
An example

Mississippi

1: mississippi
2: ississippi
3: ssissippi
4: sissippi
5: issippi
6: ssippi
7: sippi
8: ippi
9: ppi
10: pi
11: i
An example

Mississippi

1: mississippi 11: i
2: ississippi 8: ippi
3: ssissippi 5: issippi
4: sississippi 2: ississippi
5: ississippi 1: mississippi
6: ssippi 10: pi
7: sippi 9: ppi
8: ippi 7: sippi
9: ppi 4: sissippi
10: pi 6: ssippi
11: i 3: ssissippi

\[SA = [11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3] \]
An example

$$S = \text{Mississippi} \$$$$
1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12$$

$$SA = [11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]$$
An example

The leaves in a sub-tree correspond to an interval in SA, e.g. $T(v) = SA[8..11]$
Constructing suffix arrays

Straightforward
Sort suffixes using e.g. radix sort, takes time $O(n^2)$

Mississippi

1: mississippi
2: ississippi
3: ssissippi
4: sississippi
5: ississippi
6: ssippi
7: sippi
8: ippi
9: ppi
10: pi
11: i
Constructing suffix arrays

Using the suffix tree
Make a depth-first traversal of T, where edges are chosen in lexicographical order (and the sentinel $\$\$ is the smallest letter)
Constructing suffix arrays

Using the suffix tree
Make a depth-first traversal of T, where edges are chosen in lexicographical order (and the sentinel $\$\$ is the smallest letter)

$SA = [11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]$
Constructing suffix arrays

Using the suffix tree
Make a depth-first traversal of T, where edges are chosen in lexicographical order (and the sentinel $\$\$ is the smallest letter)

\[SA = [11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]\]

Time: $O(n \cdot \alpha) \ldots$
but suffix tree must be available
Using suffix arrays

Exact matching
Given string x and pattern $u[1..m]$, report where u occurs in x

If u occurs in x at position i, then u is a prefix of suffix i of x

In the suffix array we have access to the suffixes in sorted order, use binary search to find a suffix which has u as a prefix ...
An example

Searching for ssi in mississippi

L 11: i
 8: ippi
 5: issippi
 2: ississppi
 1: mississippi

M 10: pi
 9: ppi
 7: sippi
 4: sissippi
 6: ssippi

R 3: ssissippi

ssi > pi
An example

Searching for ssi in mississippi

11: i
 8: ippi
 5: issippi
 2: issississippi
 1: mississippi
L 10: pi
 9: ppi
 7: sippi
M 4: sississippi
 6: ssippi
R 3: ssississippi

ssi > sis
An example

Searching for ssi in mississippi

11: i
 8: ippi
 5: issippi
 2: ississppi
 1: mississippi
10: pi
 9: ppi
 7: sippi
L 4: sississippi
M 6: ssiippi
R 3: ssissippi

ssi = ssi
An example

Searching for ssi in mississippi

11: i
8: ippi
5: issippi
2: ississppi
1: mississippi
10: pi
9: ppi
7: sippi
L 4: sississippi
M 6: ssiippi
R 3: ssissippi

Note: that all k occurrences of ssi are indexed by neighboring positions in SA ...
An example

Searching for \texttt{ssi} in \texttt{mississippi}

11: i
10: pi
 9: ppi
 7: sippi
 L 4: sississippi
 M 6: ssippi
 R 3: ssissippi

\textbf{Time:} \(O(m \log n)\)
\(O(m(\log n + k))\)

\textbf{Note:} that all \(k\) occurrences of \texttt{ssi} are indexed by neighboring positions in SA ...
The naive algorithm

\[j = 0; \ L = 1; \ R = n \]

repeat
\[
M = \lfloor (R+L)/2 \rfloor \\
\text{if } u = x[SA[M] .. SA[M]+m-1] \text{ then} \\
\quad j = SA[M] \\
\text{elseif } u > x[SA[M] .. SA[M]+m-1] \text{ then} \\
\quad L = M \\
\text{else} \\
\quad R = M \\
\] until \(L = M \) or \(j \neq 0 \)

Time: \(O(m(\log n + k)) \)
The naive algorithm

\[
j = 0; \quad L = 1; \quad R = n
\]
repeat
\[
M = \lfloor (R+L)/2 \rfloor
\]
if \(u = x[SA[M] \ldots SA[M]+m-1] \) then
\[
j = SA[M]
\]
ext elif \(u > x[SA[M] \ldots SA[M]+m-1] \) then
\[
L = M
\]
else
\[
R = M
\]
until \(L = M \) or \(j \neq 0 \)

\textbf{Time:} \(O(m(\log n + k)) \)

Can we do better? In the worst case? In practice?
Practical speed-up

Observation
If suffixes $SA[L]$ and $SA[R]$ share a prefix, then suffixes $SA[K]$, for $K=L, L+1, \ldots, R$, share the same prefix ...

7: sippi
L 4: sissippi
M 6: ssippi
R 3: ssissippi

Suffixes 4, 6 and 3, share the prefix s ...
Practical speed-up

Observation
If suffixes $SA[L]$ and $SA[R]$ share a prefix, then suffixes $SA[K]$, for $K=L, L+1, \ldots, R$, share the same prefix ...

Trick

$P = \min\{\text{lcp}(u, SA[L]), \text{lcp}(u, SA[R])\}$,

then

$u[1..P] = x[SA[K] \ldots SA[K]+P-1]$

for all $K=L, L+1, \ldots, R$,

i.e. don’t inspect this part of the pattern

Suffixes 4, 6 and 3, share the prefix s ...
Why care?

... searching for $u[1..m]$ in $x[1..n]$ takes time $O(m)$ using a suffix tree but $O(m\log n)$ using a suffix array, why care about suffix arrays?
Why care?

... searching for \(u[1..m] \) in \(x[1..n] \) takes time \(O(m) \) using a suffix tree but \(O(m \log n) \) using a suffix array, why care about suffix arrays?

A suffix array consumes only \(4n \) bytes, much less than a suffix tree ...
Why care?

... searching for $u[1..m]$ in $x[1..n]$ takes time $O(m)$ using a suffix tree but $O(m \log n)$ using a suffix array, why care about suffix arrays?

A suffix array consumes only $4n$ bytes, much less than a suffix tree ...

$log n$ isn’t much in practice
Why care?

... searching for $u[1..m]$ in $x[1..n]$ takes time $O(m)$ using a suffix tree but $O(m\log n)$ using a suffix array, why care about suffix arrays?

A suffix array consumes only $4n$ bytes, much less than a suffix tree ...

log n isn’t much in practice ...

The real reasons

Suffix trees can systematically be replaced with suffix arrays \textit{without} loss of time [AKO 2004] ...

The suffix array can be constructed in time $O(n)$, \textit{without} using the suffix tree [KS 2003] ...
Enhanced suffix arrays

The suffix array plus additional tables of n integers ...

<table>
<thead>
<tr>
<th>Mississippi</th>
<th>11: i</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>8: ippi</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5: issippi</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2: ississppi</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>1: mississippi</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>10: pi</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9: ppi</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7: sippi</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4: sissippi</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6: sippi</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3: ssississippi</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

$lcp(SA[i], SA[i-1])$ makes it possible to “simulate” top-down and bottom-up traversals of suffix trees and the concept of suffix-links ...
Linear time construction

Farach’s idea for suffix tree construction

Step 1
Construct the suffix tree of the suffixes starting at odd positions.
... done recursively by reducing the problem to a string of half size ...

Step 2
Construct the suffix tree of the remaining positions.
... done using the suffix tree constructed in step 1 ...

Step 3
Merge the two suffix trees into one
Linear time construction

Kärkkäinen and Sanders’s idea for suffix array construction

Step 1
Construct the suffix array of the suffixes starting at positions $i \mod 3 \neq 0$.

... done recursively by reducing the problem to a string of 2/3 size ...

Step 2
Construct the suffix array of the remaining suffixes.

... done using the suffix array constructed in step 1 ...

Step 3
Merge the two suffix arrays into one
Step 1 - Compute SA^{12}

Suffixes $i \ mod \ 3 \neq 0$

1: ississippi
2: ssissippi
4: issippi
5: ssippi
7: ippi
8: ppi
10: i

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>mi</td>
<td>ss</td>
<td>sis</td>
<td>si</td>
<td>sippi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Step 1 - Compute SA^{12}

Suffixes $i \mod 3 \neq 0$

1: ississippi
2: ssissippi
4: issippi
5: ssippi
7: ippi
8: ppi
10: i$$

Sort by prefix in time $O(n)$

10: i$$
7: ipp
1: iss
4: iss
8: ppi
2: ssi
5: ssi

sentinels
Step 1 - Compute SA^{12}

Suffixes $i \mod 3 \neq 0$

1: ississippi
2: ssissippi
4: issippi
5: ssippi
7: ippi
8: ppi
10: i$$

Sort by prefix in time $O(n)$

10: i$$ 1
7: ipp 2
1: iss 3
4: iss 3
8: ppi 4
2: ssi 5
5: ssi 5

If no suffix is assigned the same lex-name, we are done.

m i s s i s s i p p i

m i s s i s s i p p i

0 1 2 3 4 5 6 7 8 9 10

lexicographical naming
Step 1 - Compute SA^{12}

Suffixes $i \mod 3 \neq 0$

1: ississippi
2: ssissippi
4: issippi
5: ssippi
7: ippi
8: ppi
10: i$$

Sort by prefix in time $O(n)$

10: i$$ 1
7: ipp 2
1: iss 3
4: iss 3
8: ppi 4
2: ssi 5
5: ssi 5

If no suffix is assigned the same lex-name, we are done, otherwise:

$u = "\text{lex-names for } i \mod 3 =1"$ # "lex-names for $i \mod 3 =2" = 3 3 2 1 # 5 5 4

where # is a special character not occurring anywhere else. The suffix array $SA(u)$ of u implies SA^{12} as there is a 1-1 mapping from suffixes of u to the suffixes $s[i..n]$ where $i \mod 3 \neq 0$.

Lexicographical naming
Step 1 - Compute SA_{12}

Suffixes $i \mod 3 \neq 0$

<table>
<thead>
<tr>
<th>i</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ississippi</td>
</tr>
<tr>
<td>2</td>
<td>ssissippi</td>
</tr>
<tr>
<td>4</td>
<td>issippi</td>
</tr>
<tr>
<td>5</td>
<td>ssippi</td>
</tr>
<tr>
<td>7</td>
<td>ippi</td>
</tr>
<tr>
<td>8</td>
<td>ppi</td>
</tr>
<tr>
<td>10</td>
<td>i$$</td>
</tr>
</tbody>
</table>

Sort by prefix in time $O(n)$

<table>
<thead>
<tr>
<th>i</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>i$$ 1</td>
</tr>
<tr>
<td>7</td>
<td>ipp 2</td>
</tr>
<tr>
<td>1</td>
<td>iss 3</td>
</tr>
<tr>
<td>4</td>
<td>iss 3</td>
</tr>
<tr>
<td>8</td>
<td>ppi 4</td>
</tr>
<tr>
<td>2</td>
<td>ssi 5</td>
</tr>
</tbody>
</table>

Time: $T(n) = O(n) + T(\lceil 2n/3 \rceil) = O(n)$

If no suffix is assigned the same lex-name, we are done, otherwise:

$u = \text{“lex-names for } i \mod 3 = 1\text{”} \# \text{“lex-names for } i \mod 3 = 2\text{”} = 3\ 3\ 2\ 1\ \#\ 5\ 5\ 4$

where # is a special character not occurring anywhere else. The suffix array $SA(u)$ of u implies SA_{12} as there is a 1-1 mapping from suffixes of u and suffixes of $s[i..n]$ where $i \mod 3 \neq 0$
Step 1 - Why ...

\[u = 3 \ 3 \ 2 \ 1 \ \# \ 5 \ 5 \ 4 \]

iss iss ipp i$$ ssi ssi ppi

Lexicographical names

10: i$$ 1
7: ipp 2
1: iss 3
4: iss 3
8: ppi 4
2: ssi 5
5: ssi 5
Step 1 - Why ...

\[u = \begin{array}{ccccccc} 3 & 3 & 2 & 1 & \# & 5 & 5 & 4 \\ iss & iss & ipp & i$$ & ssi & ssi & ppi \end{array} \]

Suffixes of \(u \)**

\(0: \) 3321#554
\(1: \) 321#554
\(2: \) 21#554
\(3: \) 1#554
\(4: \) 554
\(5: \) 54
\(6: \) 4
Step 1 - Why ...

\[u = 3 \ 3 \ 2 \ 1 \ # \ 5 \ 5 \ 4 \]

Suffixes of u

0: 3321#554 ississippi$$#ssissippi
1: 321#554 issipii$$#ssissippi
2: 21#554 ippi$$#ssissippi
3: 1#554 i$$#ssissippi
4: 554 ssissippi
5: 54 ssippi
6: 4 ppi

Lex-names expanded to corresponding prefixes of length 3
Step 1 - Why ...

$$u = 3\ 3\ 2\ 1\ \#\ 5\ 5\ 4$$

<table>
<thead>
<tr>
<th>Suffixes of u</th>
<th>Lex-names expanded to corresponding prefixes of length 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: 3321#554</td>
<td>ississippi$$#ssissippi</td>
</tr>
<tr>
<td>1: 321#554</td>
<td>issippi$$#ssissippi</td>
</tr>
<tr>
<td>2: 21#554</td>
<td>ippi$$#ssissippi</td>
</tr>
<tr>
<td>3: 1#554</td>
<td>i$$#ssissippi</td>
</tr>
<tr>
<td>4: 554</td>
<td>ssissippi</td>
</tr>
<tr>
<td>5: 54</td>
<td>ssippi</td>
</tr>
<tr>
<td>6: 4</td>
<td>ppi</td>
</tr>
</tbody>
</table>

$$i < j \iff xxx < yyy, \text{i.e } 1 < 3 \text{ because } i$$ $$< iss$$
Step 1 - Why ...

$u = \begin{bmatrix} 3 & 3 & 2 & 1 & \# & 5 & 5 & 4 \end{bmatrix}$

iss iss ipp i$$ ssi ssi ppi

Suffixes of u

0: 3321#554 ississippi$$#ssissippi
1: 321#554 issippi$$#ssissippi
2: 21#554 ippi$$#ssissippi
3: 1#554 i$$#ssissippi
4: 554 ssissippi
5: 54 ssippi
6: 4 ppi

Since the special character # is unique and occurs in unique positions, we can sort these strings by sorting the prefixes (of u) up to #
Since the sentinel $ is unique and occurs in unique positions, we can sort these strings by sorting the prefixes (of u) up to the sentinel $$.
Step 1 - Why ...

Since the sentinel $ is unique and occurs in unique positions, we can sort these strings by sorting the prefixes (of u) up to the sentinel $$. ...
Since the sentinel $ is unique and occurs in unique positions, we can sort these strings by sorting the prefixes (of u) up to the sentinel $$. ...
Step 2 - Compute SA^0

Suffixes $i \mod 3 = 0$

0: mississippi
3: sissippi
6: sippi
9: pi
Step 2 - Compute SA^0

Suffixes $i \mod 3 = 0$

<table>
<thead>
<tr>
<th>0</th>
<th>mississippi</th>
<th>m $s[1..]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>sissippi</td>
<td>s $s[4..]$</td>
</tr>
<tr>
<td>6</td>
<td>sippi</td>
<td>s $s[7..]$</td>
</tr>
<tr>
<td>9</td>
<td>pi</td>
<td>p $s[10..]$</td>
</tr>
</tbody>
</table>

Idea: every suffix $i \mod 3 = 0$ can be written $s[i] s[i+1..]$ where $i+1 \mod 3 \neq 0$, i.e. the ordering of $s[i+1..]$ is known c.f. $SA^{12} ...$
Step 2 - Compute SA^0

Suffixes $i \mod 3 = 0$

<table>
<thead>
<tr>
<th>Suffix</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>mississippi</td>
<td>0</td>
</tr>
<tr>
<td>sissippi</td>
<td>3</td>
</tr>
<tr>
<td>sippi</td>
<td>6</td>
</tr>
<tr>
<td>pi</td>
<td>9</td>
</tr>
</tbody>
</table>

Idea: every suffix $i \mod 3 = 0$ can be written $s[i..]$ where $i+1 \mod 3 \neq 0$, i.e. the ordering of $s[i+1..]$ is known c.f. SA^{12} ...

```
0: m s[1..]
3: s s[4..]
6: s s[7..]
9: p s[10..]
```

Sort by first letter and use (inverse) SA^{12} to solve ties:

```
0: m s[1..]
9: p s[10..]
6: s s[7..]
3: s s[4..]
```

```
| 10 | 7 | 4 | 1 | 8 | 5 | 2 |
```

mississippi

```
0 1 2 3 4 5 6 7 8 9 10
```
Step 2 - Compute SA^0

Suffixes $i \mod 3 = 0$

0	mississippi	m $s[1..]$
3	sissippi	s $s[4..]$
6	sippi	s $s[7..]$
9	pi	p $s[10..]$

Can be sorted in time $O(n)$ using radix-sort where the ordering of the suffixes $s[1..]$, $s[4..]$ etc. can be determine in constant time using SA^{12}

Sort by first letter and use (inverse) SA^{12} to solve ties:

0	m $s[1..]$
9	p $s[10..]$
6	s $s[7..]$
3	s $s[4..]$

Written $s[0..]s[4..]..$ where $s[-1..]$ is know c.f. SA^{12}...
Step 3 - Merging

Idea: every suffix j can be written $s[j] \, s[j+1..]$ and $s[j] \, s[j+1] \, s[j+2..]$, where $j+1 \mod 3 \neq 0$ and/or $j+2 \mod 3 \neq 0$, and the ordering of suffixes $s[i..]$ for $i \mod 3 \neq 0$ is known c.f. SA^{12} ...

Example

Determine order of suffix $s[3..]$ and $s[7..]

$s[3..] = s \, s[4..]$
$s[7..] = s \, s[8..]$

$s[4..] < s[8..]$, i.e. $s[3..] < s[7..]$
Step 3 - Merging

Let i be an element in SA^0 and j be an element in SA^{12}. We can always determine the ordering of $s[i..]$ and $s[j..]$ in time $O(1)$.

Case 1: If $j \mod 3 = 1$ then consider $s[i..] = s[i]s[i+1..]$ and $s[j..] = s[j]s[j+1..]$. Since $i \mod 3 = 0$ and $j \mod 3 = 1$, then $(i+1) \mod 3 = 1$ and $(j+1) \mod 3 = 2$, i.e. the ordering of $s[i+1..]$ and $s[j+1..]$ can be determined from SA^{12}

Case 2: If $j \mod 3 = 2$ then consider $s[i..] = s[i]s[i+1]s[i+2..]$ and $s[j..] = s[j]s[j+1]s[j+2..]$. Since $i \mod 3 = 0$ and $j \mod 3 = 2$, then $(i+2) \mod 3 = 2$ and $(j+2) \mod 3 = 1$, i.e. the ordering of $s[i+2..]$ and $s[j+2..]$ can be determined from SA^{12}

In both cases the ordering of $s[i..]$ and $s[j..]$ can be determined in time $O(1)$ by inspecting a constant number of symbols and maybe SA^{12}
Step 3 - Merging

SA:

mississippi

0 1 2 3 4 5 6 7 8 9 10
Step 3 - Merging

SA: 10,

```
ms[1..]  
0 9 6 3

is[8..]  
10 7 4 1 8 5 2
```

```plaintext
m i s s i s s i p p i
0 1 2 3 4 5 6 7 8 9 10
```
Step 3 - Merging

$m_s[1..]$ $
\begin{array}{cccc}
0 & 9 & 6 & 3 \\
\end{array}$

$i_s[5..]$ $
\begin{array}{cccccc}
10 & 7 & 4 & 1 & 8 & 5 & 2 \\
\end{array}$

$SA: 10, 7,$

$m\ s\ i\ s\ s$
Step 3 - Merging

SA: 10, 7, 4,

mississippi
Step 3 - Merging

\[
\text{SA: } 10, 7, 4, 1, \\
\text{mississippi}
\]
Step 3 - Merging

\[\text{SA: } 10, 7, 4, 1, 0, \]

\[\text{mississippi} \]
Step 3 - Merging

SA: 10, 7, 4, 1, 0, 9,

m i s s i s s i p p i
0 1 2 3 4 5 6 7 8 9 10
Step 3 - Merging

SA: 10, 7, 4, 1, 0, 9, 8,

mississippi

\[
\begin{array}{cccccc}
0 & 9 & 6 & 3 & 10 & 7 & 4 & 1 & 8 & 5 & 2 \\
\end{array}
\]
Step 3 - Merging

SA: 10, 7, 4, 1, 0, 9, 8, 6,

mississippi
0 1 2 3 4 5 6 7 8 9 10
Step 3 - Merging

SA: 10, 7, 4, 1, 0, 9, 8, 6, 3,
Step 3 - Merging

SA: 10, 7, 4, 1, 0, 9, 8, 6, 3, 5, 2

mississippi
0 1 2 3 4 5 6 7 8 9 10
Step 3 - Merging

Time: $O(n)$

SA: 10, 7, 4, 1, 0, 9, 8, 6, 3, 5, 2

mississippi

0 1 2 3 4 5 6 7 8 9 10
The “Skew” algorithm

Step 1
Construct the suffix array of the suffixes starting at positions \(i \mod 3 \neq 0 \).
... done recursively by reducing the problem to a string of \(2/3 \) size ...

Step 2
Construct the suffix array of the remaining suffixes.
... done using the suffix array constructed in step 1 ...

Step 3
Merge the two suffix arrays into one
The “Skew” algorithm

... each step takes time $O(n)$, i.e **total time**: $O(n)$...

Step 1

Construct the suffix array of the suffixes starting at positions $i \mod 3 \neq 0$.

... done recursively by reducing the problem to a string of 2/3 size ...

Step 2

Construct the suffix array of the remaining suffixes.

... done using the suffix array constructed in step 1 ...

Step 3

Merge the two suffix arrays into one
A Source Code

The following C++ file contains a complete time implementation of suffix array construction. This code strives for conciseness rather than for speed. It has only 90 lines not counting comments, empty lines, and lines with a bracket only. A driver program can be found at http://www.mpi-sb.mpg.de/~sanders/programs/suffix/.

```cpp
// find lexicographic names of triples
int name = 0, c0 = -1, c1 = -1, c2 = -1;
for (int i = 0; i < n0; i++) {
  if (s[SAIL[i]]) { c0 = s[SAIL[i] - 1]; c1 = s[SAIL[i] - 2]; c2 = s[SAIL[i] - 3];
    if (c1 % 3 == 1) { s12[SAIL[i] / 3] = name; } // left half
    else { s12[SAIL[i] / 3 + n0] = name; } // right half
  }
}

//  // recursive if names are not yet unique
if (name < n0) {
  suffixArray(s12, SAIL, n0, name);
  // store unique names in s12 using the suffix array
  for (int i = 0; i < n0; i++) s12[SAIL[i]] = i + 1;
  else { // generate the suffix array of s12 directly
    for (int i = 0; i < n0; i++) SAIL[x[SAIL[i] - 1]] = i;
  }

  // stably sort the mod 0 suffixes from SAIL by their first character
  for (int i = 0, j = 0; i < n0; i++) if (SAIL[i] < no) s12[i]++ = s12[SAIL[i] / 3] + 3 * SAIL[i];
  radixPass(s12, SAIL, s, no, 0, K);
}

// merge sorted S00 suffixes and sorted S12 suffixes
for (int p = 0, t = no - mi, k = 0; k < n; k++) {
  SAIL[mi] = i;
  if (s12[i] < n0) 
    for (int i = 0, j = 0; i < n; i++) if (SAIL[i] != 0) s12[i]++ = i;
  // lsb radix sort the mod 1 and mod 2 triples
  radixPass(s12, SAIL, s, no, 2, K);
  radixPass(SAIL, s12, s, no, 2, K);
  radixPass(s12, SAIL, s, no, 2, K);
}
```
Things to remember

Think in terms of suffix trees, but use suffix arrays ...