Strings, periods, and borders

String Algorithms
A reminder from the first lecture
Recall: Notation and terminology

x: array $[1..n]$ of A is a string on alphabet A of length $n=|x|$. The letter at position i is $x[i]$, i.e $x = x[1]x[2]...x[n]$.

$x[i..j] = x[i] x[i+1] ... x[j]$ is a substring of x of length $j-i+1$, and a proper substring if $j-i+1 < n$. It occurs in x at position i.

The substring $x[1..i]$ is a prefix of x, and a proper prefix if $i < n$, and $x[i..n]$ is a suffix of x, and a proper suffix if $i > 1$.
A non-trivial algorithm for computing the border array of string. The algorithm is based on a (semi-)clever insight into the structure of borders, it has a nice time analysis, and border arrays will be used for fast algorithms for exact pattern matching.
Borders

A *border* of x is any *proper prefix* of x that equals a *suffix* of x

abaabaab

<table>
<thead>
<tr>
<th>Empty border</th>
<th>ab</th>
<th>ab</th>
</tr>
</thead>
<tbody>
<tr>
<td>border ab</td>
<td>ab</td>
<td>abaab</td>
</tr>
<tr>
<td>border abaab</td>
<td>abaab</td>
<td>abaab</td>
</tr>
</tbody>
</table>

... overlapping borders of a string imply that the string is periodic ...

$$abaabaab = (aba)(aba)(ab) = (aba)^2ab = (aba)^{8/3}$$
Periodicities
Periodicities

1 \[\beta\] \[\text{even}\] \[\text{odd}\] \[n\]
Periodicities

1 \quad \beta \quad n
Periodicities

$x = ()^3$
Let $p = n - \beta$, then $x = u^{n/p} = u^{[n/p]}u'$, where $u' = x[1..n-[n/p]\cdot p]$

The *normal form* of $x[1..n]$ is u^{n/p^*}, where p^* is the minimum period.
Periodicities

... one of the classic lemmas concerning properties of strings ...

“The Periodicity Lemma”: Let p and q be two periods of $x = x[1..n]$, and let $d = \gcd(p, q)$. If $p+q \leq n+d$, then d is also a period of x.

\[
p = 9 \\
q = 6 \\
d = \gcd(9,6) = 3
\]
Computing borders

... computing the length of the longest border implies normal form ...

\[
\beta = 0 \\
\text{for } i=1 \text{ to } n-1 \text{ do} \\
\quad \text{if } x[1..i] = x[n-i+1..n] \text{ then} \\
\quad \quad \beta = i \\
\text{return } \beta
\]

Running time?
Computing borders

... computing the length of the longest border implies normal form ...

\[\beta = 0 \]

\[\text{for } i = 1 \text{ to } n-1 \text{ do} \]

\[\text{if } x[1..i] = x[n-i+1..n] \text{ then} \]

\[\beta = i \]

\[\text{return } \beta \]

Running time? \(O(n^2)\)

... can we do better? Yes, by computing more ...
In the *border array* $\beta[1..n]$ of x, entry $\beta[i]$ is the length of the longest border of $x[1..i]$
In the border array $\beta[1..n]$ of x, entry $\beta[i]$ is the length of the longest border of $x[1..i]$

We know: (1) $\beta[1] = 0$, (2) if $\beta[i+1] = b$, then $\beta[i] \geq b - 1$, i.e. $\beta[i+1] \leq \beta[i] + 1$
In the **border array** $\beta[1..n]$ of x, entry $\beta[i]$ is the length of the longest border of $x[1..i]$

We know: (1) $\beta[1] = 0$, (2) if $\beta[i+1] = b$, then $\beta[i] \geq b - 1$, i.e. $\beta[i+1] \leq \beta[i] + 1$

How can we **compute** $\beta[i+1]$ from $\beta[i]$?
In the **border array** $\beta[1..n]$ of x, entry $\beta[i]$ is the length of the longest border of $x[1..i]$

We know: (1) $\beta[1] = 0$, (2) if $\beta[i+1] = b$, then $\beta[i] \geq b-1$, i.e. $\beta[i+1] \leq \beta[i]+1$

How can we compute $\beta[i+1]$ from $\beta[i]$?

If $x[\beta[i]+1] = x[i+1]$, then $\beta[i+1] = \beta[i]+1$, otherwise ...
In the **border array** $\beta[1..n]$ of x, entry $\beta[i]$ is the length of the longest border of $x[1..i]$

We know: (1) $\beta[1] = 0$, (2) if $\beta[i+1] = b$, then $\beta[i] \geq b - 1$, i.e. $\beta[i+1] \leq \beta[i]+1$

Observation: if $\beta[i+1] = b$, then $x[1..i]$ has a border of length $b-1$

How can we compute $\beta[i+1]$ from $\beta[i]$?

if $x[\beta[i]+1] = x[i+1]$, then $\beta[i+1] = \beta[i]+1$, otherwise ...
In the \textit{border array} $\beta[1..n]$ of x, entry $\beta[i]$ is the length of the longest border of $x[1..i]$

Try to extend the \textit{second longest} border of $x[1..i]$
In the *border array* $\beta[1..n]$ of x, entry $\beta[i]$ is the length of the longest border of $x[1..i]$

Try to extend the *second longest* border of $x[1..i]$

i.e. the *longest border* of $x[1..\beta[i]]$

if $x[\beta[\beta[i]]+1] = x[i+1]$, then $\beta[i+1] = \beta[\beta[i]]+1$, otherwise ...
In the *border array* $\beta[1..n]$ of x, entry $\beta[i]$ is the length of the longest border of $x[1..i]$

Try to extend the *third longest* border of $x[1..i]$

If $x[\beta[\beta[\beta[i]]]+1] = x[i+1]$, then $\beta[i+1] = \beta[\beta[\beta[i]]]+1$, otherwise ...
Border array β of $x[1..n]$

\begin{align*}
\beta[1] &= 0 \\
\text{for } i = 1 \text{ to } n-1 \text{ do} \\
&\quad b = \beta[i] \\
&\quad \text{while } b > 0 \text{ and } x[i+1] \neq x[b+1] \text{ do} \\
&\quad &\quad b = \beta[b] \\
&\quad &\quad \text{if } x[i+1] = x[b+1] \text{ then} \\
&\quad &\quad &\quad \beta[i+1] = b+1 \\
&\quad &\quad \text{else} \\
&\quad &\quad &\quad \beta[i+1] = 0
\end{align*}
Border array β of $x[1..n]$

\[
\beta[1] = 0 \\
\textbf{for} \ i = 1 \ \textbf{to} \ n-1 \ \textbf{do} \\
\quad b = \beta[i] \\
\quad \textbf{while} \ b>0 \ \textbf{and} \ x[i+1] \neq x[b+1] \ \textbf{do} \\
\quad\quad b = \beta[b] \\
\quad \textbf{if} \ x[i+1] = x[b+1] \ \textbf{then} \\
\quad\quad\quad \beta[i+1] = b+1 \\
\quad \textbf{else} \\
\quad\quad\quad \beta[i+1] = 0
\]

Correctness: Follows by construction ...

$\beta[i+1]$ is set to $b+1$ (or 0), where b is the length of the longest border of $x[1..i]$ which can be extended, i.e. $x[i+1] = x[b+1]$
Border array β of $x[1..n]$

$\beta[1] = 0$

for $i = 1$ to $n-1$ do

$b = \beta[i]$

while $b>0$ and $x[i+1] \neq x[b+1]$ do

$b = \beta[b]$

if $x[i+1] = x[b+1]$ then

$\beta[i+1] = b+1$

else

$\beta[i+1] = 0$

Running time?
Border array β of $x[1..n]$

$$\beta[1] = 0$$

for $i = 1$ to $n-1$ do

$\quad b = \beta[i]$

while $b > 0$ and $x[i+1] \neq x[b+1]$ do

$\quad b = \beta[b]$

if $x[i+1] = x[b+1]$ then

$\quad \beta[i+1] = b+1$

else

$\quad \beta[i+1] = 0$

Running time? If we disregard the while-loop, then time is $O(n)$, i.e total time is “$O(n) + \text{total time for while-loop}$”
Border array \(\beta \) of \(x[1..n] \)

\[
\beta[1] = 0 \\
\text{for } i = 1 \text{ to } n-1 \text{ do} \\
\quad b = \beta[i] \\
\quad \text{while } b > 0 \text{ and } x[i+1] \neq x[b+1] \text{ do} \\
\quad \quad b = \beta[b] \\
\quad \text{if } x[i+1] = x[b+1] \text{ then} \\
\quad \quad \beta[i+1] = b+1 \\
\quad \text{else} \\
\quad \beta[i+1] = 0
\]

Observations: (1) \(b \) is initialized to 0, (2) \(b \) is increased by at most 1 in each iteration of the \textbf{for}-loop, (3) \(b \) is decreased by at least 1 in every iteration of the \textbf{while}-loop, i.e. at most \(n-2 \) iterations of the \textbf{while}-loop

Time: \(O(n) \), space: \(O(n) \) for \(x \) plus \(O(1) \) additional
Exercise: Borders and suffix trees?

Rule of thumb: Anything (almost) related to finding regularities in a string can be solved using a suffix tree.

Can we find (the length of) the longest border using a suffix tree? How long does it take?

Why, or why not, use the suffix tree approach?
Exercise: Borders and suffix trees?

Can we find (the length of) the longest border using a suffix tree? How long does it take?

If \(x \) has a border of length \(b \), then \(x[1..b] = x[n-b+1..n] \), i.e suffix 1 of \(x \$ \) (\(x[1..b] \$) and suffix \(n-b+1 \) of \(x \$ \) (\(x[n-b+1..] \$) shares the prefix \(x[1..b] \). In \(ST(x) \) this will look like this:

To find the largest \(b \) we thus search for deepest leaf \(n-b+1 \) that hangs of the path from Root to leaf 1 on an edge labelled \($ \). This takes time \(O(n) \).
Border arrays and exact pattern matching

Problem: Given text $x[1..n]$ and pattern $p[1..m]$, find all occurrences of p in x, i.e. all i where $x[i..i+m-1] = p[1..m]$.

Solution: Can be solved naively in time $O(nm)$. More efficient solutions (both in theory and practice) exists.

Today we will see a (surprisingly) simple solution based on border arrays that has worst-case running time $O(n+m)$, and we will see the classic KMP algorithm that also has worst-case running time $O(n+m)$.

Later we will see the BM and other algorithms that might be faster in practice.
Exact pattern matching: BA algorithm

Step 1: Construct $s[1..n+m+1] = p\$x$ and its borders array $\beta[1..n+m+1]$.

Step 2: Report an occurrence of p in x at position $i-2m$ iff $\beta[i] = m$.

Observation 1: No border of s has length more than m because of $\$.$

Observation 2: p occurs in x at pos. $i-m+1-(m+1) = i-2m$ iff $\beta[i] = m$.

Time and space $O(n+m)$.