Suffix trees and applications

String Algorithms
Tries

... a trie is a data structure for storing and retrieval of strings
Tries

... a trie is a data structure for storing and retrieval of strings

\[x_1 = a \ b \]
\[x_2 = a \ b \ c \]
Tries

... a trie is a data structure for storing and retrieval of strings

\[x_1 = a \ b \]

\[x_2 = a \ b \ c \]
... a trie is a data structure for storing and retrieval of strings

\[
x_1 = a \ b
\]
\[
x_2 = a \ b \ c
\]
Tries

... a trie is a data structure for storing and retrieval of strings

\[x_1 = \{a, b\} \]

\[x_2 = \{a, b, c\} \]
Tries

... a trie is a data structure for storing and retrieval of strings

\[x_1 = a \ b \]
\[x_2 = a \ b \ c \]
Tries

... a trie is a data structure for storing and retrieval of strings

\[x_1 = a \ b \]
\[x_2 = a \ b \ c \]
Tries

... a trie is a data structure for storing and retrieval of strings

\[x_1 = \text{a b} \]
\[x_2 = \text{a b c} \]

Observations: shared prefixes implies shared initial paths ...

Often we want each string to correspond to a unique root-to-leaf path, i.e. make sure that no input-string is a prefix of another. How?
... a trie is a data structure for storing and retrieval of strings

Observations: shared prefixes implies shared initial paths ...

Often we want each string to correspond to a unique root-to-leaf path, i.e. make sure that no input-string is a prefix of another. How?
Tries

... a trie is a data structure for storing and retrieval of strings ...

\[
x_1 = a \ b \\
x_2 = a \ b \ c
\]

\[
x_1 = a \ b \ $ \\
x_2 = a \ b \ c \ $ \\
x_3 = $
\]

Observations: shared prefixes implies shared initial paths ...

Often we want each string to correspond to a unique root-to-leaf path, i.e. make sure that no input-string is a prefix of another. How?
Tries

... a trie is a data structure for storing and retrieval of strings

\[x_1 = a \ b \]
\[x_2 = a \ b \ c \]

Observations: shared prefixes implies shared initial paths ...

Often we want each string to correspond to a unique root-to-leaf path, i.e. make sure that no input-string is a prefix of another. How?
Tries

... a trie is a data structure for storing and retrieval of strings

\[x_1 = a\ b \]
\[x_2 = a\ b\ c \]
\[x_3 = \$ \]

Observations: shared prefixes implies shared initial paths ...

Often we want each string to correspond to a unique root-to-leaf path, i.e. make sure that no input-string is a prefix of another. How?
Tries

... a trie is a data structure for storing and retrieval of strings

Observations: shared prefixes implies shared initial paths ...

Application: Given a query-string $y[1..m]$, we can determine if y equals one of the input-strings (or a prefix of one) in time $O(m)$...
What is the space complexity?
Compacted tries

Saving space: Eliminate all internal nodes of degree 2 ...

If we have n input-strings, then the trie has $n+1$ leaves and at most n internal nodes, i.e. space $O(n)$ for the tree. What about the labels?
Compacted tries

Saving space: Eliminate all internal nodes of degree 2 ...

If we have n input-strings, then the trie has $n+1$ leaves and at most n internal nodes, i.e. space $O(n)$ for the tree. What about the labels?

Labels can be represented in space $O(1)$, i.e. “ab” $\Rightarrow (1, 1, 2)$
Suffix tree

The suffix tree $T(x)$ of string $x[1..n]$ is the compacted trie of all suffixes $x[i..n]$ for $i = 1,.., n+1$, i.e. including the empty suffix.
The suffix tree $T(x)$ of string $x[1..n]$ is the compacted trie of all suffixes $x[i..n]$ for $i = 1,...,n+1$, i.e. including the empty suffix.

Example for $x = tatat$
The **suffix tree** $T(x)$ of string $x[1..n]$ is the **compacted trie** of all suffixes $x[i..n]$ for $i = 1,..,n+1$, i.e. including the empty suffix

Example for $x = tatat$

![Suffix Tree Example]
A larger example

\[S = \text{Mississippi$} \]

\[
\begin{array}{ccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\end{array}
\]
A larger example

Node has **path-label** `sssi` and is at **depth 3** ...

$S = \text{Mississippi}$

1 2 3 4 5 6 7 8 9 10 11 12
A larger example

Path-label of leaf i is suffix i, i.e. $x[i..n]$$ \ldots$
A larger example

Path-label of lowest common ancestor of leaf i and j, is longest common prefix of suffix i and j of x

Node has path-label ssi and is at depth 3 ...

Path-label of leaf i is suffix i, i.e. $x[i..n]\$ $...$
What is the space complexity?
Observation: $T(S)$ requires $\mathcal{O}(n)$ space.

Proof sketch:

1. $T(S)$ has at most n leaves.
2. Each internal node is branching \Rightarrow at most $n - 1$ internal nodes.
3. A tree with at most $2n - 1$ nodes has at most $2n - 2$ edges.
4. Each node requires constant space.
5. Each edge label is a substring of S \Rightarrow pair of pointers (i, j) into S.

$S = \text{Mississippi}$

1 2 3 4 5 6 7 8 9 10 11 12
Observation: $T(S)$ requires $O(n)$ space.

Proof sketch:

1. $T(S)$ has at most n leaves.
2. Each internal node is branching \(\Rightarrow\) at most $n - 1$ internal nodes.
3. A tree with at most $2n - 1$ nodes has at most $2n - 2$ edges.
4. Each node requires constant space.
5. Each edge label is a substring of S \(\Rightarrow\) pair of pointers (i, j) into S.

$S = Mississippis$

\[1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \]
Space consumption

Observation: $T(S)$ requires $\mathcal{O}(n)$ space.

Proof sketch:
1. $T(S)$ has at most n leaves.
2. Each internal node is branching \Rightarrow at most $n - 1$ internal nodes.
3. A tree with at most $2n - 1$ nodes has at most $2n - 2$ edges.
4. Each node requires constant space.
5. Each edge label is a substring of S \Rightarrow pair of pointers (i, j) into S.

$S =$ Mississippi $\quad S$
1 2 3 4 5 6 7 8 9 10 11 12

(1,12) (2,2)
Space consumption

Observation: $T(S)$ requires $\mathcal{O}(n)$ space.

Proof sketch:

1. $T(S)$ has at most n leaves.
2. Each internal node is branching \Rightarrow at most $n - 1$ internal nodes.
3. A tree with at most $2n - 1$ nodes has at most $2n - 2$ edges.
4. Each node requires constant space.
5. Each edge label is a substring of $S \Rightarrow$ pair of pointers (i, j) into S.

$S = Mississipi$
Constructing suffix trees

Constructing $T(x)$ by inserting each suffix one by one takes time $O(n^2)$

Can we do better?
Constructing suffix trees

Constructing $T(x)$ by inserting each suffix one by one takes time $O(n^2)$

[Weiner 1973]: $T(x)$ can be constructed in time $O(n)$...

Can we do better?

There are two practical algorithms that construct the suffix tree in linear time: McCreight (1976) and Ukkonen (1993) ...
What about applications?

... exact matching, finding repeats, longest common substring ...
Exact matching

Given string x and pattern y, report where y occurs in x

If y occurs in x at position i, then y is a prefix of suffix i of x

y is spelled by an initial part of the path from the root to leaf i in $T(x)$
Exact matching

Given string \(x \) and pattern \(y \), report where \(y \) occurs in \(x \)
Exact matching

Given string x and pattern y, report where y occurs in x
Exact matching

Given string x and pattern y, report where y occurs in x
Exact matching

Given string x and pattern y, report where y occurs in x
Exact matching

Given string x and pattern y, report where y occurs in x

Pattern ata occurs at position 2 in $tatat$

Time: $O(|P|)$ using the suffix tree $T(S)$
Exact matching

Given string x and pattern y, report where y occurs in x.
Exact matching

Given string x and pattern y, report where y occurs in x
Exact matching

Given string x and pattern y, report where y occurs in x
Exact matching

Given string x and pattern y, report where y occurs in x
Exact matching

Given string x and pattern y, report where y occurs in x

Pattern $tatt$ does not occur in $tatat$

Time: $O(|P|)$ using the suffix tree $T(S)$
Repeats

A pair of substrings $R=(S[i_1..j_1], S[i_2..j_2])$ is a ...

→ exact repeat if $S[i_1, j_1] = S[i_2, j_2]$

![Diagram of exact repeat](image)
Repeats

A pair of substrings $R = (S[i_1..j_1], S[i_2..j_2])$ is a...

→ exact repeat if $S[i_1, j_1] = S[i_2, j_2]$

→ k-mismatch repeat if there are k mismatches between $S[i_1, j_1]$ and $S[i_2, j_2]$
Repeats

A pair of substrings $R= (S[i_1..j_1], S[i_2..j_2])$ is a ...

→ **exact repeat** if $S[i_1, j_1] = S[i_2, j_2]$

→ **k-mismatch repeat** if there are k mismatches between $S[i_1, j_1]$ and $S[i_2, j_2]$

→ **k-differences repeat** if there are k differences (mismatches, insertions, deletions) between $S[i_1, j_1]$ and $S[i_2, j_2]$.
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

- Consider string S and its suffix tree $T(S)$.
- Repeated substrings of S correspond to internal locations in $T(S)$.
- Leaf numbers tell us positions where substrings occur.
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)
- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:
- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.

Diagram: $S = T A T A T S$
- AT: (2, 4)
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.

Analysis: $O(n + z)$ time with $z = |output|$, $O(n)$ space
A larger example

$S = \text{Mississippi}$

1 2 3 4 5 6 7 8 9 10 11 12

\[
\begin{array}{cccc}
\text{i:} & (8,5) & \text{is:} & (5,2) \\
\text{(8,2)} & \text{p:} & (10,9) \\
\text{(8,11)} & \text{s:} & (7,4) \\
\text{(5,2)} & \text{si:} & (7,4) \\
\text{(5,11)} & \text{iss:} & (5,2) \\
\text{(2,11)} & \text{ss:} & (6,3) \\
\text{issi:} & (5,2) & \text{ssi:} & (6,3) \\
\text{(4,6)} & \text{(4,3)} & \text{(6,3)}
\end{array}
\]
Finding *maximal* exact repeats
Finding *maximal* exact repeats
Finding *maximal* exact repeats
Finding **maximal** exact repeats

Idea:

- For right-maximality ($X \neq Y$)
 - consider only **internal nodes** of $T(S)$
 - report only pairs of leaves from different subtrees (or from different **leaf-lists**)
Finding maximal exact repeats

Idea:

- For right-maximality ($X \neq Y$)
 - consider only internal nodes of $T(S)$
 - report only pairs of leaves from different subtrees (or from different leaf-lists)

- For left-maximality ($A \neq B$)
 - keep lists for the different left-characters
 - report only pairs from different lists

Analysis: $\mathcal{O}(n + z)$ time with $z = |\text{output}|$, $\mathcal{O}(n)$ space
Other repeats

Maximal repeats with bounded gap in time $O(n \log n + z)$

Tandem repeats in time $O(n \log n + z)$

Palindromic repeats in $O(n + z)$

... all using suffix trees ...
More strings

The *longest common substring* of $x[1..n]$ and $y[1..m]$ is the longest string z which occurs in both x and y ...

Can this be found efficiently using a suffix tree?
The *longest common substring* of $x[1..n]$ and $y[1..m]$ is the longest string z which occurs in both x and y ...

Can this be found efficiently using a suffix tree?

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$.
More strings

\(z \) is the longest common prefix of any pair of suffixes \(x[i..n] \) and \(y[j..m] \).

Idea: Build a compacted trie of all suffixes of \(x \) and \(y \), such that each suffix of \(x \) and \(y \) corresponds to unique root-to-leaf paths ...
More strings

\(z \) is the longest common prefix of any pair of suffixes \(x[i..n] \) and \(y[j..m] \)

Idea: Build a compacted trie of all suffixes of \(x \) and \(y \), such that each suffix of \(x \) and \(y \) corresponds to unique root-to-leaf paths ...
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Idea: Build a compacted trie of all suffixes of x and y, such that each suffix of x and y corresponds to unique root-to-leaf paths ...
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Idea: Build a compacted trie of all suffixes of x and y, such that each suffix of x and y corresponds to unique root-to-leaf paths ...
More strings

\(z \) is the longest common prefix of any pair of suffixes \(x[i..n] \) and \(y[j..m] \)

Idea: Build a compacted trie of all suffixes of \(x \) and \(y \), such that each suffix of \(x \) and \(y \) corresponds to unique root-to-leaf paths ...
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Idea: Build a compacted trie of all suffixes of x and y, such that each suffix of x and y corresponds to unique root-to-leaf paths ...
More strings

\(z \) is the longest common prefix of any pair of suffixes \(x[i..n] \) and \(y[j..m] \)

Idea: Build a compacted trie of all suffixes of \(x \) and \(y \), such that each suffix of \(x \) and \(y \) corresponds to unique root-to-leaf paths ...

\[
\begin{align*}
tatat$ & \quad aataa# \\
atat$ & \quad ataa# \\
tat$ & \quad taa# \\
at$ & \quad aa# \\
t & \quad a# \\
\varepsilon & \quad \varepsilon#
\end{align*}
\]
More strings

\(z \) is the longest common prefix of any pair of suffixes \(x[i..n] \) and \(y[j..m] \)

\[
\begin{align*}
tatat$ & \quad aataa# \\
atat$ & \quad ata$a# \\
tat$ & \quad taa# \\
at$ & \quad aa# \\
t & \quad a# \\
\varepsilon & \quad \varepsilon#
\end{align*}
\]

Observe: \(z \) is the path-label of the deepest node with suffixes from both \(x \) and \(y \) as leaves in its sub-tree ...
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Observe: z is the path-label of the deepest node with suffixes from both x and y as leaves in its sub-tree ... Time: $O(n+m)$
Generalized suffix tree

This is the **generalized suffix tree** of `tatat` and `aataa`

```
tatat$
atat$
tat$
at$
$ ε$

aataa#
ataa#
taa#
aa#
a#
$ ε#
```

Can be constructed by constructing the suffix tree of ...

```
tatat$aataa#
```
Generalized suffix tree

... we must argue that we get the same branching structure ...

$1 \ldots n+2 \ldots n+m+1 \ldots 1 \ldots m$
Generalized suffix tree

Case 1:

$n+2$ $n+m+1$

1 n $n+2$ $n+m+1$

Case 1:

1 n $n+2$ $n+m+1$

1 n $n+2$ $n+m+1$

1 n $n+2$ $n+m+1$
Generalized suffix tree

Case 1:

\[
1 \quad n \quad n+2 \quad n+m+1
\]

\[
j \quad i \quad 1 \quad m \quad #
\]
Generalized suffix tree

Case 1:

```
1  n  n+2
\_\_\_\_\_
  1   n   1
  \_\_\_\_
```

```
1  m
\_\_\_\_
  1   m
  \_\_\_\_
```

```
(1, i)
```

```
(1, j)
```

```
(1, i)
```
Generalized suffix tree

Case 2:

$1 \quad n \quad 1 \quad m \quad \#$

(i, #) and (i' + (n + 1), #)

(2, j') and (2, i')
Generalized suffix tree

Case 3:

$$i \quad \#$$

$$j \quad \#$$

$$j' + (n+1)$$

$$1 \quad n \quad 1 \quad m \quad n+2 \quad n+m+1$$

$$(1, i) \quad (2, j') \quad \$$
Is everything great?
Space consumption

Fact: $T(x)$ requires $O(n)$ space, where $n = |x|$

... but how much space does it consume in “practice”?
Representation of suffix trees

Standard representation of trees:
- Store nodes as records with child and sibling pointer.
- An edge label (i, j) is stored at node below the edge.
 \Rightarrow about $32n$ bytes in the worst case
 $2n$ nodes \times (2 integers + 2 pointers)

Ideas for more efficient representation:
- Do not represent leaves explicitly.
- Avoid sibling pointers by storing all children of the same node in a row.
- Do not represent the right pointer of an edge label.
 \Rightarrow below $12n$ bytes in the worst case, $8.5n$ on average
Space consumption

Fact: $T(x)$ requires $O(n)$ space, where $n=|x|$, but ...

... in practice somewhere between 10 and 40 bytes per letter in x ...

Is this a problem? Depends on n, if $\approx 500.000.000$ then yes...
Alphabet size

How much time does it take to find the proper edge out from a node when searching in a suffix tree?
Alphabet size

How much time does it take to find the proper edge out from a node when searching in a suffix tree?

Time proportional to the out-degree of the node \(\leq |A| \) ...

... search time in “pratice” is \(O(|A| \cdot |P|) \) ...

If \(|A|\) is large, e.g. 256, this matters!!
Alphabet size

How much time does it take to find the proper edge out from a node when searching in a suffix tree?

Idea 1: Organising children in a search-tree, reduces search time from $|A|$ to $O(\log |A|)$... (requires an ordered alphabet)
Alphabet size

How much time does it take to find the proper edge out from a node when searching in a suffix tree?

Idea 2: Organising children in a vector of size $|A|$ indexed by letters, reduces search time from $|A|$ to $O(1)$... (requires a finite alphabet)
Alphabet size

How much time does it take to find the proper edge out from a node when searching in a suffix tree?

Idea 3: Use some other dictionary for mapping letters to children ...

... the alphabet size matters in practice ...