Suffix trees and applications

String Algorithms
Tries

... a trie is a data structure for storing and retrieval of strings
Tries

… a trie is a data structure for storing and retrieval of strings ….

\[x_1 = \text{a b} \]

\[x_2 = \text{a b c} \]
Tries

... a trie is a data structure for storing and retrieval of strings

\[x_1 = \{a, b\} \]

\[x_2 = \{a, b, c\} \]
Tries

... a trie is a data structure for storing and retrieval of strings

\[x_1 = a \ b \]
\[x_2 = a \ b \ c \]
... a trie is a data structure for storing and retrieval of strings

\[
x_1 = \begin{array}{c} a \ b \\
\end{array}
\]

\[
x_2 = \begin{array}{c} a \ b \ c \\
1
\end{array}
\]
Tries

… a trie is a data structure for storing and retrieval of strings ….

\[
x_1 = \{a, b\}
\]

\[
x_2 = \{a, b, c\}
\]
... a trie is a data structure for storing and retrieval of strings

\[x_1 = a \ b \]
\[x_2 = a \ b \ c \]
Tries

... a trie is a data structure for storing and retrieval of strings

\[x_1 = \text{a b} \]
\[x_2 = \text{a b c} \]

Observations: shared prefixes implies shared initial paths ...

Often we want each string to correspond to a unique root-to-leaf path, i.e. make sure that no input-string is a prefix of another. How?
Tries

… a trie is a data structure for storing and retrieval of strings ….

\[
x_1 = \text{a b} \\
x_2 = \text{a b c} \\
x_3 = \$
\]

Observations: shared prefixes implies shared initial paths …

Often we want each string to correspond to a unique root-to-leaf path, i.e. make sure that no input-string is a prefix of another. How?
Tries

... a **trie** is a data structure for storing and retrieval of strings

\[x_1 = a \ b \]
\[x_2 = a \ b \ c \]

Observations: shared prefixes implies shared initial paths ...

Often we want each string to correspond to a unique root-to-leaf path, i.e. make sure that no input-string is a prefix of another. How?
... a *trie* is a data structure for storing and retrieval of strings

\[
x_1 = a \ b
\]
\[
x_2 = a \ b \ c
\]

\[
x_3 = $
\]

\[
x_1 = a \ b \$
\]
\[
x_2 = a \ b \ c \$
\]
\[
x_3 = $
\]

Observations: shared prefixes implies shared initial paths ...

Often we want each string to correspond to a unique root-to-leaf path, i.e. make sure that no input-string is a prefix of another. How?
Tries

… a trie is a data structure for storing and retrieval of strings ….

\[x_1 = a \ b \]
\[x_2 = a \ b \ c \]
\[x_3 = \$ \]

Observations: shared prefixes implies shared initial paths …

Often we want each string to correspond to a unique root-to-leaf path, i.e. make sure that no input-string is a prefix of another. How?
... a trie is a data structure for storing and retrieval of strings ...

Observations: shared prefixes implies shared initial paths ...

Application: Given a query-string $y[1...m]$, we can determine if y equals one of the input-strings (or a prefix of one) in time $O(m)$...
What is the space complexity?
Compacted tries

Saving space: Eliminate all internal nodes of degree 2 ...

If we have \(n \) input-strings, then the trie has \(n+1 \) leaves and at most \(n \) internal nodes, i.e space \(O(n) \) for the tree. What about the labels?
Compacted tries

Saving space: Eliminate all internal nodes of degree 2 ...

If we have n input-strings, then the trie has $n+1$ leaves and at most n internal nodes, i.e. space $O(n)$ for the tree. What about the labels?

Labels can be represented in space $O(1)$, i.e. “ab” $\Rightarrow (1,1,2)$
If there are n strings...

How many leaves are there?

How many inner nodes?

How many edges?
The suffix tree $T(x)$ of string $x[1..n]$ is the compacted trie of all suffixes $x[i..n]$ for $i = 1,.., n+1$, i.e. including the empty suffix.
The suffix tree $T(x)$ of string $x[1..n]$ is the compacted trie of all suffixes $x[i..n]$ for $i = 1,..,n+1$, i.e. including the empty suffix.

Example for $x = tatat$
The suffix tree $T(x)$ of string $x[1..n]$ is the compacted trie of all suffixes $x[i..n]$ for $i = 1,..,n+1$, i.e. including the empty suffix.

Example for $x = tatat$
A larger example

$S = \text{Mississippi}\$
A larger example

Node has path-label ssi and is at depth 3 ...
A larger example

Node has **path-label** \(ssi \) and is at **depth 3** ...

Path-label of leaf \(i \) is suffix \(i \), i.e. \(x[i..n]\$ \) ...
A larger example

Node has **path-label** \(s s i \) and is at **depth** 3 ...

Path-label of lowest common ancestor of leaf \(i \) and \(j \), is longest common prefix of suffix \(i \) and \(j \) of \(x \)

Path-label of leaf \(i \) is suffix \(i \), i.e. \(x[i..n]\$ \) ...
What is the space complexity?
Observation: $T(S)$ requires $\mathcal{O}(n)$ space.

Proof sketch:
1. $T(S)$ has at most n leaves.
2. Each internal node is branching \Rightarrow at most $n - 1$ internal nodes.
3. A tree with at most $2n - 1$ nodes has at most $2n - 2$ edges.
4. Each node requires constant space.
5. Each edge label is a substring of $S \Rightarrow$ pair of pointers (i, j) into S.

$S = \text{Mississippi}$

1 2 3 4 5 6 7 8 9 10 11 12
Observation: \(T(S) \) requires \(\mathcal{O}(n) \) space.

Proof sketch:

1. \(T(S) \) has at most \(n \) leaves.
2. Each internal node is branching \(\Rightarrow \) at most \(n - 1 \) internal nodes.
3. A tree with at most \(2n - 1 \) nodes has at most \(2n - 2 \) edges.
4. Each node requires constant space.
5. Each edge label is a substring of \(S \) \(\Rightarrow \) pair of pointers \((i, j)\) into \(S \).

\[S = \text{Mississippi} \]

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\end{array}
\]
Observation: \(T(S) \) requires \(\mathcal{O}(n) \) space.

Proof sketch:
1. \(T(S) \) has at most \(n \) leaves.
2. Each internal node is branching \(\Rightarrow \) at most \(n - 1 \) internal nodes.
3. A tree with at most \(2n - 1 \) nodes has at most \(2n - 2 \) edges.
4. Each node requires constant space.
5. Each edge label is a substring of \(S \) \(\Rightarrow \) pair of pointers \((i, j) \) into \(S \).

\(S = \text{Mississippi} \)

\(\begin{array}{c}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\end{array} \)
Observation: $T(S)$ requires $O(n)$ space.

Proof sketch:
1. $T(S)$ has at most n leaves.
2. Each internal node is branching \Rightarrow at most $n - 1$ internal nodes.
3. A tree with at most $2n - 1$ nodes has at most $2n - 2$ edges.
4. Each node requires constant space.
5. Each edge label is a substring of S \Rightarrow pair of pointers (i, j) into S.

$S = \text{Mississippi}$
Constructing suffix trees

Constructing $T(x)$ by inserting each suffix one by one takes time $O(n^2)$

Can we do better?
Constructing suffix trees

Constructing $T(x)$ by inserting each suffix one by one takes time $O(n^2)$

Can we do better?

[Weiner 1973]: $T(x)$ can be constructed in time $O(n)$...

There are two practical algorithms that construct the suffix tree in linear time: McCreight (1976) and Ukkonen (1993) ...
What about applications?

... exact matching, finding repeats, longest common substring ...
Exact matching

Given string x and pattern y, report where y occurs in x

If y occurs in x at position i, then y is a prefix of suffix i of x

y is spelled by an initial part of the path from the root to leaf i in $T(x)$
Exact matching

Given string x and pattern y, report where y occurs in x.
Exact matching

Given string x and pattern y, report where y occurs in x
Exact matching

Given string x and pattern y, report where y occurs in x
Exact matching

Given string x and pattern y, report where y occurs in x
Exact matching

Given string x and pattern y, report where y occurs in x

Pattern ata occurs at position 2 in tatat

Time: $O(|P|)$ using the suffix tree $T(S)$
Exact matching

Given string x and pattern y, report where y occurs in x
Exact matching

Given string \(x \) and pattern \(y \), report where \(y \) occurs in \(x \)
Exact matching

Given string x and pattern y, report where y occurs in x
Exact matching

Given string x and pattern y, report where y occurs in x.
Exact matching

Given string x and pattern y, report where y occurs in x

Pattern $tatt$ does not occur in $tatat$

Time: $O(|P|)$ using the suffix tree $T(S)$
Repeats

A pair of substrings $R=(S[i_1..j_1], S[i_2..j_2])$ is a ...

→ exact repeat if $S[i_1, j_1] = S[i_2, j_2]$
Repeats

A pair of substrings $R=(S[i_1..j_1], S[i_2..j_2])$ is a ...

→ exact repeat if $S[i_1, j_1] = S[i_2, j_2]$

→ k-mismatch repeat if there are k mismatches between $S[i_1, j_1]$ and $S[i_2, j_2]$
Repeats

A pair of substrings $R = (S[i_1..j_1], S[i_2..j_2])$ is a ...

→ exact repeat if $S[i_1, j_1] = S[i_2, j_2]$

→ k-mismatch repeat if there are k mismatches between $S[i_1, j_1]$ and $S[i_2, j_2]$

→ k-differences repeat if there are k differences (mismatches, insertions, deletions) between $S[i_1, j_1]$ and $S[i_2, j_2]$
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.

$S = T A T A T S$

[Diagram showing a suffix tree with nodes and edges labeled with characters and numbers, indicating positions and matches such as AT: (2,4) and A: (2,4).]
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)
• It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:
• consider string S and its suffix tree $T(S)$.
• repeated substrings of S correspond to internal locations in $T(S)$.
• leaf numbers tell us positions where substrings occur.

Analysis: $O(n + z)$ time with $z = |output|$, $O(n)$ space
A larger example

S = Mississippi

i: (8,5) is: (5,2) p: (10,9) s: (7,4) si: (7,4)
(8,2)
(8,11) iss: (5,2)
(5,2)
(5,11) issi: (5,2)
(2,11)
Finding *maximal* exact repeats
Finding *maximal* exact repeats
Finding maximal exact repeats
Finding maximal exact repeats

Idea:

- For right-maximality ($X \neq Y$)
 - consider only internal nodes of $T(S)$
 - report only pairs of leaves from different subtrees (or from different leaf-lists)
Finding **maximal** exact repeats

Idea:

- For right-maximality \((X \neq Y)\)
 - consider only **internal nodes** of \(T(S)\)
 - report only pairs of leaves from different subtrees
 (or from different **leaf-lists**)

- For left-maximality \((A \neq B)\)
 - keep lists for the different left-characters
 - report only pairs from different lists

Analysis: \(O(n + z)\) time with \(z = |\text{output}|\), \(O(n)\) space
Other repeats

Maximal repeats with bounded gap in time $O(n \log n + z)$

Tandem repeats in time $O(n \log n + z)$

Palindromic repeats in $O(n + z)$

... all using suffix trees ...
The *longest common substring* of \(x[1..n]\) and \(y[1..m]\) is the longest string \(z\) which occurs in both \(x\) and \(y\) ...

Can this be found efficiently using a suffix tree?
The *longest common substring* of $x[1..n]$ and $y[1..m]$ is the longest string z which occurs in both x and y ...

Can this be found efficiently using a suffix tree?

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Idea: Build a compacted trie of all suffixes of x and y, such that each suffix of x and y corresponds to unique root-to-leaf paths ...
More strings

\(z \) is the longest common prefix of any pair of suffixes \(x[i..n] \) and \(y[j..m] \)

Idea: Build a compacted trie of all suffixes of \(x \) and \(y \), such that each suffix of \(x \) and \(y \) corresponds to unique root-to-leaf paths ...
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Idea: Build a compacted trie of all suffixes of x and y, such that each suffix of x and y corresponds to unique root-to-leaf paths ...
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Idea: Build a compacted trie of all suffixes of x and y, such that each suffix of x and y corresponds to unique root-to-leaf paths ...

$$S = \text{TATAT}$}

```
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>tata$</td>
<td>aataa#</td>
</tr>
<tr>
<td>atat$</td>
<td>ataa#</td>
</tr>
<tr>
<td>tat$</td>
<td>taa#</td>
</tr>
<tr>
<td>at$</td>
<td>aa#</td>
</tr>
<tr>
<td>t$</td>
<td>a#</td>
</tr>
<tr>
<td>$\epsilon$</td>
<td>$\epsilon$</td>
</tr>
</tbody>
</table>
```

Diagram:
- Node 1: #aat
- Node 3: a#
- Node 5: a#
- Node 6: a#

Tree structure:
- Edge from 1 to A
- Edge from A to T
- Edge from T to ϵ
- Edge from 2 to A
- Edge from 4 to T
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Idea: Build a compacted trie of all suffixes of x and y, such that each suffix of x and y corresponds to unique root-to-leaf paths ...
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Idea: Build a compacted trie of all suffixes of x and y, such that each suffix of x and y corresponds to unique root-to-leaf paths ...

![Example trie diagram]
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Idea: Build a compacted trie of all suffixes of x and y, such that each suffix of x and y corresponds to unique root-to-leaf paths ...
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Observe: z is the path-label of the deepest node with suffixes from both x and y as leaves in its sub-tree ...
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Observe: z is the path-label of the deepest node with suffixes from both x and y as leaves in its sub-tree ... \textbf{Time}: $O(n+m)$
Generalized suffix tree

This is the **generalized suffix tree** of **tatat** and **aataa**

Can be constructed by constructing the suffix tree of ...

tatat$aataa#
Generalized suffix tree

... we must argue that we get the same branching structure ...

\[n+2 \quad n+m+1 \]

1 \[n \quad 1 \quad m \]

\#
Generalized suffix tree

Case 1:

1 n 1 m $n+2$ $n+m+1$
Generalized suffix tree

Case 1:

\[
\begin{align*}
&\text{Root} & \text{Node} & \text{Node} \\
&1 & n & n+2 \\
&i & 1 & n+m+1 \\
&j & m & \\
\end{align*}
\]
Generalized suffix tree

Case 1:

1 $ n+2 $ $ n+m+1$

$1 n m$ #

(1, i) j

(1, i) j

(1, j) i

(1, j) i
Generalized suffix tree

Case 2:

\[i \quad \# \quad j \quad \# \]

\[i' + (n+1) \quad \# \quad j' + (n+1) \]

\[j \quad \# \]

\[(2, j') \]

\[(2, i') \]
Case 3:

\[
\begin{align*}
&i \quad \# \\
&j \quad \# \\
&j' + (n+1)
\end{align*}
\]
Is everything great?
Space consumption

Fact: $T(x)$ requires $O(n)$ space, where $n = |x|$

... but how much space does it consume in “practice”?
Representation of suffix trees

Standard representation of trees:
- Store nodes as records with child and sibling pointer.
- An edge label \((i, j)\) is stored at node below the edge.
 \(\Rightarrow\) about \(32n\) bytes in the worst case
 \(2n\) nodes \(\times\) (2 integers + 2 pointers)

Ideas for more efficient representation:
- Do not represent leaves explicitly.
- Avoid sibling pointers by storing all children of the same node in a row.
- Do not represent the right pointer of an edge label.
 \(\Rightarrow\) below \(12n\) bytes in the worst case, \(8.5n\) on average
Fact: \(T(x) \) requires \(O(n) \) space, where \(n=|x| \), but

... in practice somewhere between 10 and 40 bytes per letter in \(x \) ...

Is this a problem? Depends on \(n \), if \(\approx 500.000.000 \) then yes...
Alphabet size

How much time does it take to find the proper edge out from a node when searching in a suffix tree?

\[S = T A T A T S \]
\[P = A T A \]
Alphabet size

How much time does it take to find the proper edge out from a node when searching in a suffix tree?

Time proportional to the out-degree of the node $\leq |A|$...

... search time in “pratice” is $O(|A| \cdot |P|)$...

If $|A|$ is large, e.g. 256, this matters!!
Alphabet size

How much time does it take to find the proper edge out from a node when searching in a suffix tree?

Idea 1: Organising children in a search-tree, reduces search time from $|A|$ to $O(\log |A|)$... (requires an ordered alphabet)
Alphabet size

How much time does it take to find the proper edge out from a
node when searching in a suffix tree?

Idea 2: Organising children in a vector of size $|A|$ indexed by letters,
reduces search time from $|A|$ to $O(1)$... (requires a finite alphabet)
Alphabet size

How much time does it take to find the proper edge out from a node when searching in a suffix tree?

Idea 3: Use some other dictionary for mapping letters to children ...

... the alphabet size matters in practice ...