Strings, periods, and borders

String Algorithms
A reminder from the first lecture
A formal definition

A string is a collection of elements that obeys the following rules

1. every element has a label that is unique
2. every element with some label \(x \) (except at most one, called the \textit{leftmost}) has a unique determinable \textit{predecessor} labelled \(p(x) \)
3. every element with some label \(x \) (except at most one, called the \textit{rightmost}) has a unique determinable \textit{successor} labelled \(s(x) \)
4. whenever an element with label \(x \) is not leftmost, then \(x = s(p(x)) \)
5. whenever an element with label \(x \) is not rightmost, then \(x = p(s(x)) \)
6. for any two distinct elements with labels \(x \) and \(y \), there exist a positive integer \(k \) such that either \(x = s^k(y) \) or \(x = p^k(y) \)
But ...

... a string is still what it has always been

... a finite sequence of elements from some alphabet \(A \),
where the label of an element is its position/index ...

Definition: An element of \(A^+ \) is called a *linear string* on alphabet \(A \).
An element of \(A^* \) is called a *finite string* on \(A \).
Notation and terminology

\(x: \text{array} [1..n] \) of \(A \) is a \text{string} on alphabet \(A \) of \text{length} \(n=|x| \).
The \text{letter} at position \(i \) is \(x[i] \), i.e \(x = x[1]x[2]...x[n] \)

\(x[i..j] = x[i] \ x[i+1] \ ... \ x[j] \) is a \text{substring} of \(x \) of length \(j-i+1 \), and a \text{proper substring} if \(j-i+1 < n \). It occurs in \(x \) at position \(i \)

The substring \(x[1..i] \) is a \text{prefix} of \(x \), and a \text{proper prefix} if \(i < n \), and \(x[i..n] \) is a \text{suffix} of \(x \), and a \text{proper suffix} if \(i > 1 \)
Today

A non-trivial algorithm for computing the **border array** of string. The algorithm is based on a (semi-)clever **insight into the structure of borders**, it has a **nice time analysis**, and border arrays will be used later in the class for **fast algorithms for exact pattern matching**.
Borders

A border of x is any proper prefix of x that equals a suffix of x

- Empty border
- Border ab
- Border $abaab$

... overlapping borders of a string imply that the string is periodic ...

$abaabaab = (aba)(aba)(ab) = (aba)^2ab = (aba)^{8/3}$
Periodicities
Periodicities
Periodicities

1 \hspace{2cm} \beta \hspace{2cm} n
Periodicities

\[x = (\text{blue part})^3 \]
Let $p = n - \beta$, then $x = u^{n/p} = u^{[n/p]}u'$, where $u' = x[1..n-[n/p]\cdot p]$

The **normal form** of $x[1..n]$ is u^{n/p^*}, where p^* is the minimum period
Computing borders

... computing the length of the longest border implies normal form ...

\[
\beta = 0 \\
\text{for } i = 1 \text{ to } n-1 \text{ do} \\
\quad \text{if } x[1..i] = x[n-i+1..n] \text{ then} \\
\quad \quad \beta = i \\
\text{return } \beta
\]

Running time?
Computing borders

... computing the length of the longest border implies normal form ...

\[\beta = 0 \]

\[\text{for } i=1 \text{ to } n-1 \text{ do} \]

\[\text{if } x[1..i] = x[n-i+1..n] \text{ then} \]

\[\beta = i \]

\[\text{return } \beta \]

Running time? \(O(n^2) \)

... can we do better? Yes, by computing more ...
In the *border array* $\beta[1..n]$ of x, entry $\beta[i]$ is the length of the longest border of $x[1..i]$
In the *border array* $\beta[1..n]$ of x, entry $\beta[i]$ is the length of the longest border of $x[1..i]$

We know: (1) $\beta[1] = 0$, (2) if $\beta[i+1] = b$, then $\beta[i] \geq b-1$, i.e. $\beta[i+1] \leq \beta[i]+1$
Border array

In the border array $\beta[1..n]$ of x, entry $\beta[i]$ is the length of the longest border of $x[1..i]$.

We know: (1) $\beta[1] = 0$, (2) if $\beta[i+1] = b$, then $\beta[i] \geq b - 1$, i.e. $\beta[i+1] \leq \beta[i]+1$.

How can we compute $\beta[i+1]$ from $\beta[i]$?
In the *border array* $\beta[1..n]$ of x, entry $\beta[i]$ is the length of the longest border of $x[1..i]$

We know: (1) $\beta[1] = 0$, (2) if $\beta[i+1] = b$, then $\beta[i] \geq b-1$, i.e. $\beta[i+1] \leq \beta[i]+1$

How can we compute $\beta[i+1]$ from $\beta[i]$?

if $x[\beta[i] + 1] = x[i+1]$, then $\beta[i+1] = \beta[i]+1$, otherwise ...
Border array

In the border array $\beta[1..n]$ of x, entry $\beta[i]$ is the length of the longest border of $x[1..i]$

We know: (1) $\beta[1] = 0$, (2) if $\beta[i+1] = b$, then $\beta[i] \geq b-1$, i.e. $\beta[i+1] \leq \beta[i]+1$

Observation: if $\beta[i+1] = b$, then $x[1..i]$ has a border of length $b-1$

How can we compute $\beta[i+1]$ from $\beta[i]$?

if $x[\beta[i] + 1] = x[i+1]$, then $\beta[i+1] = \beta[i]+1$, otherwise ...
In the border array $\beta[1..n]$ of x, entry $\beta[i]$ is the length of the longest border of $x[1..i]$

Try to extend the second longest border of $x[1..i]$
In the border array $\beta[1..n]$ of x, entry $\beta[i]$ is the length of the longest border of $x[1..i]$.

Try to extend the second longest border of $x[1..i]$ i.e. the longest border of $x[1..\beta[i]]$.

If $x[\beta[\beta[i]]+1] = x[i+1]$, then $\beta[i+1] = \beta[\beta[i]]+1$, otherwise ...
In the *border array* $\beta[1..n]$ of x, entry $\beta[i]$ is the length of the longest border of $x[1..i]$

Try to extend the *third longest* border of $x[1..i]$

If $x[\beta[\beta[\beta[i]]]+1] = x[i+1]$, then $\beta[i+1] = \beta[\beta[\beta[i]]]+1$, otherwise ...
Border array β of $x[1..n]$

\[
\beta[1] = 0 \\
\text{for } i = 1 \text{ to } n-1 \text{ do} \\
\quad b = \beta[i] \\
\quad \text{while } b>0 \text{ and } x[i+1] \neq x[b+1] \text{ do} \\
\quad \quad b = \beta[b] \\
\quad \text{if } x[i+1] = x[b+1] \text{ then} \\
\quad \quad \beta[i+1] = b+1 \\
\quad \text{else} \\
\quad \quad \beta[i+1] = 0
\]
Border array β of $x[1..n]$

\[
\begin{align*}
\beta[1] &= 0 \\
\text{for } i = 1 \text{ to } n-1 \text{ do} \\
& \quad b = \beta[i] \\
& \quad \text{while } b > 0 \text{ and } x[i+1] \neq x[b+1] \text{ do} \\
& \quad \quad b = \beta[b] \\
& \quad \text{if } x[i+1] = x[b+1] \text{ then} \\
& \quad \quad \beta[i+1] = b + 1 \\
& \quad \text{else} \\
& \quad \quad \beta[i+1] = 0
\end{align*}
\]

Correctness: Follows by construction ...

$\beta[i+1]$ is set to $b+1$ (or 0), where b is the length of the longest border of $x[1..i]$ which can be extended, i.e. $x[i+1] = x[b+1]$
Border array β of $x[1..n]$

$$\beta[1] = 0$$

for $i = 1$ to $n-1$ do
 $$b = \beta[i]$$
 while $b > 0$ and $x[i+1] \neq x[b+1]$ do
 $$b = \beta[b]$$
 if $x[i+1] = x[b+1]$ then
 $$\beta[i+1] = b + 1$$
 else
 $$\beta[i+1] = 0$$

Running time?
Border array β of $x[1..n]$

$$\beta[1] = 0$$

for $i = 1$ to $n-1$ do
 $$b = \beta[i]$$
 while $b > 0$ and $x[i+1] \neq x[b+1]$ do
 $$b = \beta[b]$$
 if $x[i+1] = x[b+1]$ then
 $$\beta[i+1] = b+1$$
 else
 $$\beta[i+1] = 0$$

Running time? If we disregard the while-loop, then time is $O(n)$, i.e. total time is “$O(n) +$ total time for while-loop”
Border array β of $x[1..n]$

\[\beta[1] = 0\]

\[\text{for } i = 1 \text{ to } n-1 \text{ do}\]

\[b = \beta[i]\]

\[\text{while } b > 0 \text{ and } x[i+1] \neq x[b+1] \text{ do}\]

\[b = \beta[b]\]

\[\text{if } x[i+1] = x[b+1] \text{ then}\]

\[\beta[i+1] = b+1\]

\[\text{else}\]

\[\beta[i+1] = 0\]

Observations: (1) b is initialized to 0, (2) b is increased by at most 1 in each iteration of the for-loop, (3) b is decreased by at least 1 in every iteration of the while-loop, i.e. at most $n-2$ iterations of the while-loop.

Time: $O(n)$, **space:** $O(n)$ for x plus $O(1)$ additional
Exercise: Borders and suffix trees?

Rule of thumb: Anything (almost) related to finding regularities in a string can be solved using a suffix tree.

Can we find (the length of) the longest border using a suffix tree? How long does it take?

Why, or why not, use the suffix tree approach?
Periodicities

... one of the classic lemmas concerning properties of strings ...

“**The Periodicity Lemma**”: Let p and q be two periods of $x = x[1..n]$, and let $d = \gcd(p, q)$. If $p + q \leq n + d$, then d is also a period of x

```
aabaababaabaabaabaabaabaab
aabaabaab
```

$p = 9$

```
aabaababaab
```
Periodicities

... one of the classic lemmas concerning properties of strings ...

“The Periodicity Lemma”: Let \(p \) and \(q \) be two periods of \(x = x[1..n] \), and let \(d = \gcd(p, q) \). If \(p+q \leq n+d \), then \(d \) is also a period of \(x \)

\[
\begin{align*}
\text{aabaab} & \text{aabaabaabaabaabaabaab} \\
\text{aabaabaab} & \text{aabaab} \\
p = 9 & \quad \text{aabaabaab} \\
\text{aabaab} & \text{aabaab} \\
q = 6 & \quad \text{aabaab} \\
\text{aabaab} & \text{aabaab}
\end{align*}
\]
Periodicities

... one of the classic lemmas concerning properties of strings ...

“The Periodicity Lemma”: Let p and q be two periods of $x = x[1..n]$, and let $d = \gcd(p, q)$. If $p+q \leq n+d$, then d is also a period of x.

\[
\begin{align*}
\text{aabaabaabaabaabaabaabaab} & \quad \text{aabaabaab} \\
\text{aabaabaab} & \quad \text{aabaab} \\
p = 9 \\
\text{aabaabaab} & \quad \text{aabaab} \\
\text{aabaab} & \quad \text{aabaab} \\
q = 6 \\
\text{aabaab} & \quad \text{aabaab} \\
\text{aab} & \quad \text{aab} & \quad \text{aab} & \quad \text{aab} & \quad \text{aab} \\
d = \gcd(9,6) = 3 & \quad \text{aab} & \quad \text{aab} & \quad \text{aab} & \quad \text{aab} & \quad \text{aab}
\end{align*}
\]