Suffix trees and applications

String Algorithms
Tries

... a trie is a data structure for storing and retrieval of strings
... a trie is a data structure for storing and retrieval of strings

\[x_1 = \text{a b} \]

\[x_2 = \text{a b c} \]
Tries

… a trie is a data structure for storing and retrieval of strings ….

\[x_1 = a \ b \]

\[x_2 = a \ b \ c \]
Tries

… a trie is a data structure for storing and retrieval of strings ….

\[x_1 = \text{a b} \]
\[x_2 = \text{a b c} \]
Tries

... a trie is a data structure for storing and retrieval of strings

\[x_1 = a \ b \]
\[x_2 = a \ b \ c \]
Tries

... a trie is a data structure for storing and retrieval of strings

\[x_1 = \begin{array}{c} a \ b \end{array} \]

\[x_2 = \begin{array}{c} a \ b \ c \end{array} \]
Tries

... a trie is a data structure for storing and retrieval of strings

\[x_1 = a \ b \]

\[x_2 = a \ b \ c \]
... a trie is a data structure for storing and retrieval of strings

\[x_1 = a \ b \]
\[x_2 = a \ b \ c \]

Observations: shared prefixes implies shared initial paths ...

Often we want each string to correspond to a unique root-to-leaf path, i.e. make sure that no input-string is a prefix of another. How?
... a trie is a data structure for storing and retrieval of strings

\[
x_1 = \text{a b}
\]

\[
x_2 = \text{a b c}
\]

\[
x_3 = \$
\]

Observations: shared prefixes implies shared initial paths ...

Often we want each string to correspond to a unique root-to-leaf path, i.e. make sure that no input-string is a prefix of another. How?
... a trie is a data structure for storing and retrieval of strings

\[x_1 = a \ b \]
\[x_2 = a \ b \ c \]
\[x_3 = $ \]

Observations: shared prefixes implies shared initial paths ...

Often we want each string to correspond to a unique root-to-leaf path, i.e. make sure that no input-string is a prefix of another. How?
... a trie is a data structure for storing and retrieval of strings

\[x_1 = a \ b \]
\[x_2 = a \ b \ c \]
\[x_3 = $ \]

Observations: shared prefixes implies shared initial paths ...

Often we want each string to correspond to a unique root-to-leaf path, i.e. make sure that no input-string is a prefix of another. How?
Tries

... a trie is a data structure for storing and retrieval of strings

\[
x_1 = a \ b
\]
\[
x_2 = a \ b \ c
\]
\[
x_3 = \$
\]

Observations: shared prefixes implies shared initial paths ...

Often we want each string to correspond to a unique root-to-leaf path, i.e. make sure that no input-string is a prefix of another. How?
Tries

... a trie is a data structure for storing and retrieval of strings

Observations: shared prefixes implies shared initial paths ...

Application: Given a query-string $y[1...m]$, we can determine if y equals one of the input-strings (or a prefix of one) in time $O(m)$...
What is the space complexity?
Compacted tries

Saving space: Eliminate all internal nodes of degree 2 ...

If we have n input-strings, then the trie has $n+1$ leaves and at most n internal nodes, i.e. space $O(n)$ for the tree. What about the labels?
Compacted tries

Saving space: Eliminate all internal nodes of degree 2 ...

If we have n input-strings, then the trie has $n+1$ leaves and at most n internal nodes, i.e. space $O(n)$ for the tree. What about the labels?

Labels can be represented in space $O(1)$, i.e. “ab” $\Rightarrow (1,1,2)$
The *suffix tree* $T(x)$ of string $x[1..n]$ is the *compacted trie* of all suffixes $x[i..n]$ for $i = 1,.., n+1$, i.e. including the empty suffix.
The **suffix tree** $T(x)$ of string $x[1..n]$ is the **compacted trie** of all suffixes $x[i..n]$ for $i = 1,.., n+1$, i.e. including the empty suffix.

Example for $x = \text{tatat}$

```
tatat$
atat$
tat$
at$
t$
\varepsilon$
```
The suffix tree $T(x)$ of string $x[1..n]$ is the compacted trie of all suffixes $x[i..n]$ for $i = 1, .., n+1$, i.e. including the empty suffix.

Example for $x = \text{tatat}$
A larger example

$S = \text{Mississippi}\$

1 2 3 4 5 6 7 8 9 10 11 12
A larger example

Node has **path-label** \texttt{ssi} and is at **depth 3** ...
A larger example

Node has **path-label** `ssi` and is at **depth 3** ...

Path-label of leaf `i` is *suffix* `i`, i.e. `$x[i..n]` ...
A larger example

Node has **path-label** \(ssi \) and is at **depth 3** ...

Path-label of lowest common ancestor of leaf \(i \) and \(j \), is longest common prefix of suffix \(i \) and \(j \) of \(x \)

Path-label of leaf \(i \) is suffix \(i \), i.e. \(x[i..n]s \) ...
What is the space complexity?
Space consumption

Observation: $T(S)$ requires $O(n)$ space.

Proof sketch:
1. $T(S)$ has at most n leaves.
2. Each internal node is branching \Rightarrow at most $n - 1$ internal nodes.
3. A tree with at most $2n - 1$ nodes has at most $2n - 2$ edges.
4. Each node requires constant space.
5. Each edge label is a substring of S \Rightarrow pair of pointers (i, j) into S.

\[S = \text{Mississippi} \]$
Space consumption

Observation: $T(S)$ requires $O(n)$ space.

Proof sketch:
1. $T(S)$ has at most n leaves.
2. Each internal node is branching \(\Rightarrow \) at most $n - 1$ internal nodes.
3. A tree with at most $2n - 1$ nodes has at most $2n - 2$ edges.
4. Each node requires constant space.
5. Each edge label is a substring of S \(\Rightarrow \) pair of pointers (i, j) into S.

$S = \text{Mississippi }\$

1 2 3 4 5 6 7 8 9 10 11 12
Observation: $T(S)$ requires $O(n)$ space.

Proof sketch:
1. $T(S)$ has at most n leaves.
2. Each internal node is branching \Rightarrow at most $n - 1$ internal nodes.
3. A tree with at most $2n - 1$ nodes has at most $2n - 2$ edges.
4. Each node requires constant space.
5. Each edge label is a substring of $S \Rightarrow$ pair of pointers (i, j) into S.

$S = \text{Mississippi } \$$

1 2 3 4 5 6 7 8 9 10 11 12
Observation: $T(S)$ requires $\mathcal{O}(n)$ space.

Proof sketch:

1. $T(S)$ has at most n leaves.
2. Each internal node is branching \Rightarrow at most $n - 1$ internal nodes.
3. A tree with at most $2n - 1$ nodes has at most $2n - 2$ edges.
4. Each node requires constant space.
5. Each edge label is a substring of S \Rightarrow pair of pointers (i, j) into S.

$S = \text{Mississippi }$
Constructing suffix trees

Constructing $T(x)$ by inserting each suffix one by one takes time $O(n^2)$

Can we do better?
Constructing suffix trees

Constructing $T(x)$ by inserting each suffix one by one takes time $O(n^2)$

Can we do better?

[Weiner 1973]: $T(x)$ can be constructed in time $O(n)$...

There are two practical algorithms that construct the suffix tree in linear time: McCreight (1976) and Ukkonen (1993) ...
What about applications?

... exact matching, finding repeats, longest common substring ...
Exact matching

Given string \(x \) and pattern \(y \), report where \(y \) occurs in \(x \)

If \(y \) occurs in \(x \) at position \(i \), then \(y \) is a prefix of suffix \(i \) of \(x \)

\(y \) is spelled by an initial part of the path from the root to leaf \(i \) in \(T(x) \)
Exact matching

Given string \(x \) and pattern \(y \), report where \(y \) occurs in \(x \)
Exact matching

Given string x and pattern y, report where y occurs in x
Exact matching

Given string x and pattern y, report where y occurs in x
Exact matching

Given string x and pattern y, report where y occurs in x
Exact matching

Given string \(x \) and pattern \(y \), report where \(y \) occurs in \(x \)

Pattern \texttt{ata} occurs at position 2 in \texttt{tatat}

Time: \(O(|P|) \) using the suffix tree \(T(S) \)
Exact matching

Given string x and pattern y, report where y occurs in x
Exact matching

Given string x and pattern y, report where y occurs in x
Exact matching

Given string x and pattern y, report where y occurs in x
Given string x and pattern y, report where y occurs in x
Exact matching

Given string x and pattern y, report where y occurs in x

Pattern $tatt$ does not occur in $tatat$

Time: $O(|P|)$ using the suffix tree $T(S)$
Repeats

A pair of substrings $R = (S[i_1..j_1], S[i_2..j_2])$ is a ...

→ exact repeat if $S[i_1, j_1] = S[i_2, j_2]$
Repeats

A pair of substrings $R = (S[i_1..j_1], S[i_2..j_2])$ is a ...

→ exact repeat if $S[i_1, j_1] = S[i_2, j_2]$

→ k-mismatch repeat if there are k mismatches between $S[i_1, j_1]$ and $S[i_2, j_2]$
Repeats

A pair of substrings $R = (S[i_1..j_1], S[i_2..j_2])$ is a ...

→ exact repeat if $S[i_1, j_1] = S[i_2, j_2]$

→ k-mismatch repeat if there are k mismatches between $S[i_1, j_1]$ and $S[i_2, j_2]$

→ k-differences repeat if there are k differences (mismatches, insertions, deletions) between $S[i_1, j_1]$ and $S[i_2, j_2]$
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)
- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:
- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)
- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:
- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.

![Suffix Tree Example](image)
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)
- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:
- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.
Finding exact repeats

Folklore: (see e.g. Gusfield, 1997)

- It is possible to find all pairs of repeated substrings (repeats) in S in linear time.

Idea:

- consider string S and its suffix tree $T(S)$.
- repeated substrings of S correspond to internal locations in $T(S)$.
- leaf numbers tell us positions where substrings occur.

Analysis: $O(n + z)$ time with $z = |\text{output}|$, $O(n)$ space
A larger example
Finding *maximal* exact repeats
Finding maximal exact repeats
Finding maximal exact repeats
Finding *maximal* exact repeats

Idea:

- For right-maximality ($X \neq Y$)
 - consider only *internal nodes* of $T(S)$
 - report only pairs of leaves from different subtrees (or from different *leaf-lists*)
Finding **maximal** exact repeats

Idea:

- For right-maximality \((X \neq Y)\)
 - consider only **internal nodes** of \(T(S)\)
 - report only pairs of leaves from different subtrees (or from different **leaf-lists**)

- For left-maximality \((A \neq B)\)
 - keep lists for the different left-characters
 - report only pairs from different lists

Analysis: \(O(n + z)\) time with \(z = |\text{output}|\), \(O(n)\) space
Other repeats

Maximal repeats with bounded gap in time $O(n \log n + z)$

Tandem repeats in time $O(n \log n + z)$

Palindromic repeats in $O(n + z)$

... all using suffix trees ...
The *longest common substring* of $x[1..n]$ and $y[1..m]$ is the longest string z which occurs in both x and y ...

Can this be found efficiently using a suffix tree?
More strings

The *longest common substring* of $x[1..n]$ and $y[1..m]$ is the longest string z which occurs in both x and y ...

Can this be found efficiently using a suffix tree?

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$
z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Idea: Build a compacted trie of all suffixes of x and y, such that each suffix of x and y corresponds to unique root-to-leaf paths ...
z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Idea: Build a compacted trie of all suffixes of x and y, such that each suffix of x and y corresponds to unique root-to-leaf paths ...
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Idea: Build a compacted trie of all suffixes of x and y, such that each suffix of x and y corresponds to unique root-to-leaf paths ...

```
S = T A T A T $
    1 2 3 4 5 6

atat$
atat$
tat$
at$

aataa#
taa#

ataa#
at#

# a a t

1 2 4 5 6

a#
```
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Idea: Build a compacted trie of all suffixes of x and y, such that each suffix of x and y corresponds to unique root-to-leaf paths ...

```
| tatat$ | aataa# |
|atat$  | ataa#  |
|tat$   | taa#   |
|at$    | aa#    |
|t$     | a#     |
|ε$     | ε#     |
```
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Idea: Build a compacted trie of all suffixes of x and y, such that each suffix of x and y corresponds to unique root-to-leaf paths ...
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Idea: Build a compacted trie of all suffixes of x and y, such that each suffix of x and y corresponds to unique root-to-leaf paths...

```
| tatat$ | aataa# |
| atat$  | ataa#  |
| tat$   | taa#   |
| at$    | aa#    |
| t$     | a#     |
| ε$      | ε#      |
```
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$

Idea: Build a compacted trie of all suffixes of x and y, such that each suffix of x and y corresponds to unique root-to-leaf paths ...
More strings

z is the longest common prefix of any pair of suffixes $x[i..n]$ and $y[j..m]$.

Observe: z is the path-label of the deepest node with suffixes from both x and y as leaves in its sub-tree ...
More strings

\(z \) is the longest common prefix of any pair of suffixes \(x[i..n] \) and \(y[j..m] \)

Observe: \(z \) is the path-label of the deepest node with suffixes from both \(x \) and \(y \) as leaves in its sub-tree ...

Time: \(O(n+m) \)
Generalized suffix tree

This is the generalized suffix tree of tatat and aataa

Can be constructed by constructing the suffix tree of ... tatat$ aataa#
... we must argue that we get the same branching structure ...
Generalized suffix tree

Case 1:
Generalized suffix tree

Case 1:

\[
1 \quad 2 \quad 3 \quad 4 \quad 5
\]

\[
1 \quad 2 \quad 3 \quad 4 \quad 5
\]

\[
i \quad j \quad i \quad j
\]

\[
i \quad j \quad i \quad j
\]
Generalized suffix tree

Case 1:

1. i
2. $\#$
3. j
4. $\#$
5. $(1, j)$
6. $(1, i)$
Generalized suffix tree

Case 2:

\[i' + (n+1) \]

\[(2, i') \]

\[j' + (n+1) \]

\[(2, j') \]
Case 3:
Is everything great?
Space consumption

Fact: $T(x)$ requires $O(n)$ space, where $n = |x|$

... but how much space does it consume in “practice”?
Representation of suffix trees

Standard representation of trees:
- Store nodes as records with child and sibling pointer.
- An edge label \((i, j) \) is stored at node below the edge.

\[\Rightarrow \quad \text{about } 32n \text{ bytes in the worst case} \]
\[2n \text{ nodes } \times (2 \text{ integers } + 2 \text{ pointers}) \]

Ideas for more efficient representation:
- Do not represent leaves explicitly.
- Avoid sibling pointers by storing all children of the same node in a row.
- Do not represent the right pointer of an edge label.

\[\Rightarrow \quad \text{below } 12n \text{ bytes in the worst case, } 8.5n \text{ on average} \]
Space consumption

Fact: $T(x)$ requires $O(n)$ space, where $n = |x|$, but

... in practice somewhere between 10 and 40 bytes per letter in x ...

Is this a problem? Depends on n, if $\approx 500,000,000$ then yes...
Alphabet size

How much time does it take to find the proper edge out from a node when searching in a suffix tree?

\[S = T A T A T \$ \]
\[P = A T A \]

![Suffix Tree Diagram](image)
Alphabet size

How much time does it take to find the proper edge out from a node when searching in a suffix tree?

Time proportional to the out-degree of the node $\leq |A|$...

... search time in “practice” is $O(|A| \cdot |P|)$...

If $|A|$ is large, e.g. 256, this matters!!
Alphabet size

How much time does it take to find the proper edge out from a node when searching in a suffix tree?

Idea 1: Organising children in a search-tree, reduces search time from $|A|$ to $O(\log |A|)$... (requires an ordered alphabet)
Alphabet size

How much time does it take to find the proper edge out from a node when searching in a suffix tree?

Idea 2: Organising children in a vector of size $|A|$ indexed by letters, reduces search time from $|A|$ to $O(1)$... (requires a finite alphabet)
Alphabet size

How much time does it take to find the proper edge out from a node when searching in a suffix tree?

Idea 3: Use some other dictionary for mapping letters to children ...

... the alphabet size matters in practice ...