Hidden Markov Models
Implementing the forward-, backward- and Viterbi-algorithms using log-space and scaling
The Viterbi Algorithm

$\omega(z_n)$ is the probability of the most likely sequence of states z_1, \ldots, z_n generating the observations x_1, \ldots, x_n

$$\omega(z_n) = \max_{z_1, \ldots, z_{n-1}} p(x_1, \ldots, x_n, z_1, \ldots, z_n)$$

Recursion:

$$\omega(z_n) = p(x_n | z_n) \max_{z_{n-1}} \omega(z_{n-1}) p(z_n | z_{n-1})$$

Basis:

$$\omega(z_1) = p(x_1, z_1) = p(z_1) p(x_1 | z_1) = \prod_{k=1}^{K} \{ \pi_k p(x_1 | \phi_k) \}^{z_{1,k}}$$

Takes time $O(K^2 N)$ and space $O(KN)$ using memorization
The Viterbi Algorithm

\(\omega(z_n) \) is the probability of the most likely sequence of states \(z_1, \ldots, z_n \) generating the observations \(x_1, \ldots, x_n \).

Recursion:

\[
\omega(z_n) = p(x_n | z_n) \max_{z_{n-1}} \omega(z_{n-1}) p(z_n | z_{n-1})
\]

Basis:

\[
\omega(z_1) = p(x_1, z_1) = p(z_1) p(x_1 | z_1) = \prod_{k=1}^{K} \left\{ \pi_k p(x_1 | \phi_k) \right\}^{z_{1k}}
\]

Takes time \(O(K^2N) \) and space \(O(KN) \) using memorization.
The Viterbi Algorithm

\(\omega(z_n) \) is the probability of the most likely sequence of states \(z_1, \ldots, z_n \) generating the observations \(x_1, \ldots, x_n \)

\[
\omega(z_n) \equiv \max_{z_1, \ldots, z_{n-1}} \omega(z_n)
\]

Recursion:

\[
\omega(z_n) = p(x_n | z_n) \max_{z_{n-1}} \omega(z_{n-1}) p(z_n | z_{n-1})
\]

Basis:

Problem: The values \(\omega(z_{nk}) \) can come very close to zero, by multiplying them we potentially exceed the precision of double precision floating points

Takes time \(O(K^2N) \) and space \(O(KN) \) using memorization
The Viterbi Algorithm

$\omega(z_n)$ is the probability of the most likely sequence of states z_1, \ldots, z_n generating the observations x_1, \ldots, x_n.

Recursion:

$$\omega(z_n) = p(x_n | z_n) \max_{z_{n-1}} \omega(z_{n-1}) p(z_n | z_{n-1})$$

Basis:

Problem: The values $\omega(z_{nk})$ can come very close to zero, by multiplying them we potentially exceed the precision of double precision floating points.

Solution: Because $\log (\max f) = \max \log f$, we can work in "log-space" which turns multiplications into additions ...
The Viterbi Algorithm in log-space

ω(\(z_n\)) is the probability of the most likely sequence of states \(z_1, \ldots, z_n\) generating the observations \(x_1, \ldots, x_n\)

\[
\log \omega(z_n) = \max_{z_1, \ldots, z_{n-1}} \log p(x_1, \ldots, x_n, z_1, \ldots, z_n)
\]

Recursion:

\[
\log \omega(z_n) = \log p(x_n | z_n) + \max_{z_{n-1}} \left(\log \omega(z_{n-1}) + \log p(z_n | z_{n-1}) \right)
\]

\(\hat{\omega}(z_n) = \log p(x_n | z_n) + \max_{z_{n-1}} \left(\hat{\omega}(z_{n-1}) + \log p(z_n | z_{n-1}) \right)\)

Basis:

\[
\hat{\omega}(z_1) = \log \prod_{k=1}^{K} \{ \pi_k p(x_1 | \phi_k) \}^{z_{1k}} = \sum_{k=1}^{K} z_{1k} (\log \pi_k + \log p(x_1 | \phi_k))
\]
The Viterbi Algorithm in log-space

$\omega(z_n)$ is the probability of the most likely sequence of states z_1, \ldots, z_n generating the observations x_1, \ldots, x_n.

Recursion:

$$\log \omega(z_n) = \log p(x_n | z_n) + \max_{z_{n-1}} (\log \omega(z_{n-1}) + \log k = 1, \ldots, n)$$

Basis:

$$\hat{\omega}(z_1) = \log \prod_{k=1}^{K} \{ \pi_k p(x_1 | \phi_k) \}^{z_{1k}} = \sum_{k=1}^{K} z_{1k} (\log \pi_k + \log p(x_1 | \phi_k))$$
A problem with “log-space”?

\[
\omega(z_n) = p(x_n | z_n) \max_{z_{n-1}} \omega(z_{n-1}) p(z_n | z_{n-1}) \\
\hat{\omega}(z_n) = \log p(x_n | z_n) + \max_{z_{n-1}} (\hat{\omega}(z_{n-1}) + \log p(z_n | z_{n-1}))
\]

What if \(p(x_n | z_n) \) or \(p(z_n | z_{n-1}) \) is 0? Then the product of probabilities becomes 0, but what should it be in log-space?
A problem with “log-space”?

\[
\begin{align*}
\omega(z_n) &= p(x_n | z_n) \max_{z_{n-1}} \omega(z_{n-1}) p(z_n | z_{n-1}) \\
\hat{\omega}(z_n) &= \log p(x_n | z_n) + \max_{z_{n-1}} (\hat{\omega}(z_{n-1}) + \log p(z_n | z_{n-1}))
\end{align*}
\]

What if \(p(x_n | z_n) \) or \(p(z_n | z_{n-1}) \) is 0? Then the product of probabilities becomes 0, but what should it be in log-space?

It should be some representation of “minus infinity”

// Pseudo code for computing \(w^{[k][n]} \) for some \(n>1 \)

\(w^{[n][k]} = \text{undef} \)

if \(p(x[n] | k) \neq 0 \):
 for \(j = 1 \) to \(K \):
 if \(p(k | j) \neq 0 \):
 \(w^{[n][k]} = \max(w^{[k][n]}, \log(p(x[n] | k)) + w^{[j][n-1]} + \log(p(k | j))) \)
The Viterbi Algorithm in log-space

$\omega(z_n)$ is the probability of the most likely sequence of states $z_1,...,z_n$ generating the observations $x_1,...,x_n$.

Recursion:

$$\log \omega(z_n) = \log p(x_n | z_n) + \max_{z_{n-1}} (\log \omega(z_{n-1}) + \log p(z_n | z_{n-1}))$$

$$\hat{\omega}(z_n) = \log p(x_n | z_n) + \max_{z_{n-1}} (\hat{\omega}(z_{n-1}) + \log p(z_n | z_{n-1}))$$

Basis:

$$\hat{\omega}(z_1) = \log \prod_{k=1}^{K} p(x_1 | \phi_k) \hat{\omega}(z_k) = \sum \gamma_k (\log \pi_1 + \log p(x_1 | \phi_k))$$

Still takes time $O(K^2N)$ and space $O(KN)$ using memorization, and the most likely sequence of states can be found by backtracking.
Backtracking

Pseudocode for backtracking not using log-space:

\[
\begin{align*}
z[1..N] &= \text{undef} \\
z[N] &= \arg\max_k \omega[k][N] \\
\text{for } n &= N-1 \text{ to } 1: \\
&\quad z[n] = \arg\max_k \left(p(x[n+1] | z[n+1]) \right. \\
&\quad \left. \times \omega[k][n] \times p(z[n+1] | k) \right) \\
\text{print } z[1..N]
\end{align*}
\]

Pseudocode for backtracking using log-space:

\[
\begin{align*}
z[1..N] &= \text{undef} \\
z[N] &= \arg\max_k \omega^*[k][N] \\
\text{for } n &= N-1 \text{ to } 1: \\
&\quad z[n] = \arg\max_k \left(\log p(x[n+1] | z[n+1]) \right. \\
&\quad \left. + \omega^*[k][n] + \log p(z[n+1] | k) \right) \\
\text{print } z[1..N]
\end{align*}
\]

Takes time \(O(NK)\) but requires the entire \(\omega\)- or \(\omega^*\)-table in memory
Backtracking

Can we do backtracking without the entire ω- or ω^\land-table in memory
Backtracking – Idea 1
Fill out the table using a sliding window of two columns and keep every Bth column in memory. Takes time $O(KN^2)$ and space $O(KN/B)$.

When backtracking recompute and backtrack through blocks of B columns from right to left. Pr. block it takes time $O(BK^2)$ and space $O(BK)$ for recomputing and storing B columns, and time $O(BK)$ for backtracking. In total time $O(NK^2)$ and space $O(BK)$.

If we choose $B=\sqrt{N}$, then space $O(K*\sqrt{N})$ and time $O(NK^2)$ in total.
Backtracking – Idea 2

Fill out the table using a sliding window of two columns. Keep the “middle column” in memory and keep track of $z_{\lfloor N/2 \rfloor}$ for any possible decoding z_1, \ldots, z_N (i.e. where does the path to entry (N,k) cross the middle column). Time $O(NK^2)$ and space $O(K)$.

Retrieve an optimal decoding by recursing on the left and right part of the table.

The total time is $T(N) = 2 \times T(N/2) + NK^2 = O(\log N \times NK^2)$ using space $O(K)$.
The Forward Algorithm

\(\alpha(z_n) \) is the joint probability of observing \(x_1, \ldots, x_n \) and being in state \(z_n \)

\[\alpha(z_n) \equiv p(x_1, \ldots, x_n, z_n) \]

Recursion:

\[\alpha(z_n) = p(x_n | z_n) \sum_{z_{n-1}} \alpha(z_{n-1})p(z_n | z_{n-1}) \]

Basis:

\[\alpha(z_1) = p(x_1, z_1) = p(z_1)p(x_1 | z_1) = \prod_{k=1}^{K} \{ \pi_k p(x_1 | \phi_k) \}^{z_{1,k}} \]

Takes time \(O(K^2N) \) and space \(O(KN) \) using memorization
The Forward Algorithm

\(\alpha(z_n) \) is the joint probability of observing \(x_1, \ldots, x_n \) and being in state \(z_n \).

Recursion:

\[
\alpha(z_n) = p(x_n | z_n) \sum_{z_{n-1}} \alpha(z_{n-1}) p(z_n | z_{n-1})
\]

Basis:

\[
\alpha(z_1) = p(x_1, z_1) = p(z_1) p(x_1 | z_1) = \prod_{k=1}^{K} \{\pi_k p(x_1 | \phi_k)\}^{z_1k}
\]

Takes time \(O(K^2N) \) and space \(O(KN) \) using memorization.
The Forward Algorithm

\(\alpha(z_n) \) is the joint probability of observing \(x_1, \ldots, x_n \) and being in state \(z_n \).

Recursion:

\[
\alpha(z_n) = p(x_n | z_n) \sum_{z_{n-1}} \alpha(z_{n-1}) p(z_n | z_{n-1})
\]

Basis:

Problem: The values \(\alpha(z_{nk}) \) can come very close to zero, by multiplying them we potentially exceed the precision of double precision floating points.

Another problem: Because \(\log (\sum f) \neq \sum (\log f) \), we cannot use the “log-space” trick ...
Forward algorithm using scaled values

\(\alpha(z_n) \) is the joint probability of observing \(x_1, \ldots, x_n \) and being in state \(z_n \)

\[
\alpha(z_n) = p(x_1, \ldots, x_n, z_n) = p(x_1, \ldots, x_n)p(z_n|x_1, \ldots, x_n)
\]

\[
\hat{\alpha}(z_n) = p(z_n|x_1, \ldots, x_n) = \frac{\alpha(z_n)}{p(x_1, \ldots, x_n)} = \frac{\alpha(z_n)}{\prod_{m=1}^{n} c_m}
\]

\[
c_n = p(x_n|x_1, \ldots, x_{n-1})
\]

This “normalized version” \(\alpha(z_n) \) is a probability distribution over \(K \) outcomes, and we expect it to “behave numerically well” because

\[
\sum_{k=1}^{K} \hat{\alpha}(z_{nk}) = 1
\]

The normalized values can not all become arbitrary small ...
Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values

\[
\alpha(z_n) = p(x_n|z_n) \sum_{z_{n-1}} \alpha(z_{n-1})p(z_n|z_{n-1}) \iff
\]

\[
\left(\prod_{m=1}^{n} c_m \right) \hat{\alpha}(z_n) = p(x_n|z_n) \sum_{z_{n-1}} \left(\prod_{m=1}^{n-1} c_m \right) \hat{\alpha}(z_{n-1})p(z_n|z_{n-1}) \iff
\]

\[
c_n \hat{\alpha}(z_n) = p(x_n|z_n) \sum_{z_{n-1}} \hat{\alpha}(z_{n-1})p(z_n|z_{n-1})
\]

\[
\alpha(z_n) = \left(\prod_{m=1}^{n} c_m \right) \hat{\alpha}(z_n)
\]
Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values

\[
\alpha(z_n) = p(x_n | z_n) \sum_{z_{n-1}} \alpha(z_{n-1}) p(z_n | z_{n-1}) \iff
\]

\[
\left(\prod_{m=1}^{n} c_m \right) \hat{\alpha}(z_n) = p(x_n | z_n) \sum_{z_{n-1}} \left(\prod_{m=1}^{n-1} c_m \right) \hat{\alpha}(z_{n-1}) p(z_n | z_{n-1}) \iff
\]

\[
c_n \hat{\alpha}(z_n) = p(x_n | z_n) \sum_{z_{n-1}} \hat{\alpha}(z_{n-1}) p(z_n | z_{n-1})
\]

If we know \(c_n\) then we have a recursion using the normalized values

\[
\alpha(z_n) = \left(\prod_{m=1}^{n} c_m \right) \hat{\alpha}(z_n)
\]
Another kind of decoding

$\alpha(z_n)$ is the joint probability of observing x_1, \ldots, x_n and being in state z_n

$$\alpha(z_n) \equiv p(x_1, \ldots, x_n, z_n)$$

$\beta(z_n)$ is the conditional probability of future observation x_{n+1}, \ldots, x_N assuming being in state z_n

$$\beta(z_n) \equiv p(x_{n+1}, \ldots, x_N | z_n)$$

Using $\alpha(z_n)$ and $\beta(z_n)$ we can also find the most likely state to be in after n steps as:

$$z_n^* = \arg \max_{z_n} \alpha(z_n) \beta(z_n)$$

This is called posterior decoding.
Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values

\[\alpha(z_n) = p(x_n | z_n) \sum_{z_{n-1}} \alpha(z_{n-1}) p(z_n | z_{n-1}) \]

\[\left(\prod_{m=1}^{n} c_m \right) \hat{\alpha}(z_n) = p(x_n | z_n) \sum_{z_{n-1}} \left(\prod_{m=1}^{n-1} c_m \right) \hat{\alpha}(z_{n-1}) p(z_n | z_{n-1}) \]

If we know \(c_n \), then we have a recursion using the normalized values

\[\sum_{k=1}^{K} c_n \hat{\alpha}(z_{nk}) = c_n \sum_{k=1}^{K} \hat{\alpha}(z_{nk}) = c_n \cdot 1 \]

\[\alpha(z_n) = \left(\prod_{m=1}^{n} c_m \right) \hat{\alpha}(z_n) \]
Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values

Recursion:

In step n compute and store temporarily the K values $\delta(z_{n1}), \ldots, \delta(z_{nK})$

$$\delta(z_n) = c_n \hat{\alpha}(z_n) = p(x_n|z_n) \sum_{z_{n-1}} \hat{\alpha}(z_{n-1}) p(z_n|z_{n-1})$$

Compute and store c_n as

$$\sum_{k=1}^{K} \delta(z_{nk}) = \sum_{k=1}^{K} c_n \hat{\alpha}(z_{nk}) = c_n \sum_{k=1}^{K} \hat{\alpha}(z_{nk}) = c_n$$

Compute and store $\hat{\alpha}(z_{nk}) = \delta(z_{nk})/c_n$
Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values:

Recursion:

In step n compute and store temporarily the K values

$\delta(z_n) = c_n \hat{\alpha}(z_n) = p(x_n | z_n) \sum_{z_{n-1}} \hat{\alpha}(z_{n-1}) p(z_n | z_{n-1})$

Compute and store c_n as

$$\sum_{k=1}^{K} \delta(z_{nk}) = \sum_{k=1}^{K} c_n \hat{\alpha}(z_{nk}) = c_n \sum_{k=1}^{K} \hat{\alpha}(z_{nk}) = c_n$$

Compute and store $\hat{\alpha}(z_{nk}) = \delta(z_{nk})/c_n$

Basis:

$$\hat{\alpha}(z_1) = \frac{\alpha(z_1)}{c_1} \quad c_1 = p(x_1) = \sum_{z_1} p(z_1)p(x_1 | z_1) = \sum_{k=1}^{K} \pi_k p(x_1 | \phi_k)$$
Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values.

Recursion:

In step n compute and store temporarily the K values:

$$\delta(z_n) = c_n \hat{\alpha}(z_n) = p(x_n | z_n) \sum_{z_{n-1}} \hat{\alpha}(z_{n-1}) p(z_n | z_{n-1})$$

Compute and store c_n as:

$$\sum_{k=1}^{K} \delta(z_{nk}) = \sum_{k=1}^{K} c_n \hat{\alpha}(z_{nk}) = c_n \sum_{k=1}^{K} \hat{\alpha}(z_{nk}) = c_n$$

Compute and store $\hat{\alpha}(z_{nk}) = \delta(z_{nk}) / c_n$

Basis:

$$\hat{\alpha}(z_1) = \frac{\alpha(z_1)}{c_1}$$

$$c_1 = p(x_1) = \sum_{z_1} p(z_1) p(x_1 | z_1) = \sum_{k=1}^{K} \pi_k p(x_1 | \phi_k)$$

Takes time $O(K^2 N)$ and space $O(K N)$ using memorization.
The Backward Algorithm

$\beta(z_n)$ is the conditional probability of future observation x_{n+1}, \ldots, x_N assuming being in state z_n

$$\beta(z_n) \equiv p(x_{n+1}, \ldots, x_N | z_n)$$

Recursion:

$$\beta(z_n) = \sum_{z_{n+1}} \beta(z_{n+1})p(x_{n+1} | z_{n+1})p(z_{n+1} | z_n)$$

Basis:

$$\beta(z_N) = 1$$

Takes time $O(K^2N)$ and space $O(KN)$ using memorization
Backward algorithm using scaled values

We can modify the backward-recursion to use scaled values

Recursion:

In step n compute and store temporarily the K values $\varepsilon(z_{n1}), \ldots, \varepsilon(z_{nK})$

$$
\varepsilon(z_n) = c_{n+1} \hat{\beta}(z_n) = \sum_{z_{n+1}} \hat{\beta}(z_{n+1}) p(x_{n+1} | z_{n+1}) p(z_{n+1} | z_n)
$$

Using c_{n+1} computed during the forward-recursion, compute and store

$$
\hat{\beta}(z_{nk}) = \varepsilon(z_{nk}) / c_{n+1}
$$

Basis:

$$
\hat{\beta}(z_N) = 1
$$
Backward algorithm using scaled values

We can modify the backward-recursion to use scaled values.

Recursion:

In step n compute and store temporarily:

$$\epsilon(z_n) = c_{n+1} \hat{\beta}(z_n) = \sum_{z_{n+1}} \hat{\beta}(z_{n+1}) p(x_{n+1}|z_{n+1}) p(z_{n+1}|z_n)$$

Using c_{n+1} computed during the forward-recursion, compute and store:

$$\hat{\beta}(z_{nk}) = \epsilon(z_{nk}) / c_{n+1}$$

Basis:

$$\hat{\beta}(z_N) = 1$$

Takes time $O(K^2N)$ and space $O(KN)$ using memorization.
HMMs and languages

Recall that a language is a set of strings.

An HMM defines a language as the strings X, where $P(X) > 0$.

This can be shown to be a regular language.