Hidden Markov Models

Selecting the initial model parameters

Using HMMs for (simple) gene finding
HMMs as a generative model

A HMM *generates a sequence of observables* by moving from latent state to latent state according to the transition probabilities and *emitting an observable* (from a discrete set of observables, i.e. a finite alphabet) from each latent state visited *according to the emission probabilities* of the state ...

For a HMM that generates finite strings (e.g. a HMM with an end-state), the language $L = \{X | p(X) > 0\}$ is regular ...
Selecting initial model parameters

The initial selection of transition and emission probabilities, i.e. A, π, Φ, should model (how we see) the underlying structure of the observations, i.e. the syntax of possible sequences of observations, recall that the language $L = \{x \mid P(x \mid \theta) > 0\}$ is regular.

The initial selection of parameters is essential just to decide which parameters are 0 (or 1), i.e. to decide which transitions of emission should never (or always) be possible ...
Example – Gene finding

Each protein is encoded in a stretch of DNA. A gene ...

Which is expressed when the protein is needed ...

Important problem

Locating genes on the genome and determining how they get expressed ...

Recognizing the patterns that indicates a gene ...
<table>
<thead>
<tr>
<th>UCA</th>
<th>GAG</th>
<th>UCG</th>
<th>CAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHE</td>
<td>SER</td>
<td>TYR</td>
<td>CYS</td>
</tr>
<tr>
<td>PHE</td>
<td>SER</td>
<td>TYR</td>
<td>CYS</td>
</tr>
<tr>
<td>LEU</td>
<td>SER</td>
<td>OCHRE</td>
<td>OPAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UCU</th>
<th>GAG</th>
<th>UCG</th>
<th>CAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRO</td>
<td>HIS</td>
<td>ARG</td>
<td>ARG</td>
</tr>
<tr>
<td>PRO</td>
<td>HIS</td>
<td>ARG</td>
<td>ARG</td>
</tr>
<tr>
<td>PRO</td>
<td>GLU</td>
<td>ARG</td>
<td>ARG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UCU</th>
<th>GAG</th>
<th>UCG</th>
<th>CAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILEU</td>
<td>THR</td>
<td>ASPN</td>
<td>SER</td>
</tr>
<tr>
<td>ILEU</td>
<td>THR</td>
<td>ASPN</td>
<td>SER</td>
</tr>
<tr>
<td>ILEU</td>
<td>THR</td>
<td>LYS</td>
<td>ARG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UCG</th>
<th>GAG</th>
<th>UCG</th>
<th>CAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAL</td>
<td>ALA</td>
<td>ASP</td>
<td>GLY</td>
</tr>
<tr>
<td>VAL</td>
<td>ALA</td>
<td>ASP</td>
<td>GLY</td>
</tr>
<tr>
<td>VAL</td>
<td>ALA</td>
<td>GLU</td>
<td>GLY</td>
</tr>
</tbody>
</table>

KEY
- PHE: Phenylalanine
- GLU: Glutamic Acid
- ASP: Aspartic Acid
- SER: Serine
- THR: Threonine
- ILE: Isoleucine
- LEU: Leucine
- VAL: Valine
- ALA: Alanine
- GLY: Glycine
- MET: Methionine
- PRO: Proline
- LYS: Lysine
- CYS: Cysteine
- ARG: Arginine
- TRP: Tryptophan
- HIS: Histidine
- TRA: Trinque
- GLN: Glutamine
- ASN: Asparagine
- ASN: Asparagine
Design a HMM that models the syntax of genes
Gene structure

 Depends on the organism (eucaryote or procaryote)

Smaller genomes and high coding density.

Large genomes. Intron/exon structure and low coding density.
Gene structure in eukaryotes

Eukaryotic gene structure in more details
Gene structure in procaryotes

Biological facts
- The gene is a substring of the DNA sequence of A,C,G,T's
- The gene starts with a start-code `atg`
- The gene ends with a stop-codon `taa`, `tag`, or `tga`
- The number of nucleotides in a gene is a multiple of 3

\[\pi_N = 1 \]
\[\pi_C = 0 \]

Z: NNNCCCCCCCCCCCCNNNNNNNNNNCCCCCCCCCCCCCCCCCCCCCCCCCCCCCNNNNNNNNNNNNNN

X: acgatgcgcctaatatgtccgatgacgtgagcataagcgcacatgcag
Gene structure in procaryotes

- The gene is a substring of the DNA sequence of A,C,G,T's
- The gene starts with a start-codon `atg`

Z: NNNCCCCCCNNNNNNNNNNCCCCCCCCCCCCCCCCCCCCCCCCCNNNNNNNNNNNNNN

X: acgatgcgctaatatgtccgatgacgtgagcataaagcgacatgcag

C: coding

N: non-coding

$\pi_N = 1$
$\pi_C = 0$
Gene structure in procaryotes

Biological facts
- The gene is a substring of the DNA sequence of A,C,G,T's
- The gene starts with a start-codon \textbf{atg}

\[
\begin{align*}
Z: & \quad \text{NNNCCCCCCCCCCCCNNNNNNNNNNNNNNNNNNNNNNNNNNN} \\
X: & \quad \text{acgatgcgctaatatgtccgatgacgtgagcataagcgacat}
\end{align*}
\]

\[
\begin{align*}
\pi_N &= 1 \\
\pi_C &= 0
\end{align*}
\]
Gene structure in procaryotes

Biological facts
- The gene is a substring of the DNA sequence of A,C,G,T's
- The gene starts with a start-codon `atg`
- The gene ends with a stop-codon `taa, tag` or `tga`

DNA
- **mRNA**
- **Translation**

Z: NNNCCCCCCCCCCNNNNNNNNNCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCNNNNNNNNNNNNN

X: acgatgcgcctaataatgttcgatgacgtgagcataagcgacatg

\[
\begin{align*}
\pi_N &= 1 \\
\pi_C &= 0
\end{align*}
\]

A: >0 C: 0 G: 0 T: 0 N: non-coding
A: 1 C: 0 G: 0 T: 0
A: 0 C: 0 G: 0 T: 1
A: 0 C: 0 G: 1 T: 0
A: >0 C: >0 G: >0 T: >0 C: coding
Gene structure in procaryotes

- The gene is a substring of the DNA sequence of A,C,G,T's
- The gene starts with a start-codon **atg**
- The gene ends with a stop-codon **taa**, **tag** or **tga**

\[\pi_N = 1\]
\[\pi_C = 0\]
Gene structure in procaryotes

- The gene is a substring of the DNA sequence of A,C,G,T's
- The gene starts with a start-codon **atg**
- The gene ends with a stop-codon **taa, tag** or **tga**
- The number of nucleotides in a gene is a multiple of 3

N: non-coding

- A: >0
- C: >0
- G: >0
- T: >0

C: coding

- A: >0
- C: >0
- G: >0
- T: >0

\[\pi_N = 1 \]
\[\pi_C = 0 \]
Gene structure in procaryotes

- The gene is a substring of the DNA sequence of A,C,G,T's
- The gene starts with a start-codon **atg**
- The gene ends with a stop-codon **taa**, **tag** or **tga**
- The number of nucleotides in a gene is a multiple of 3

\[\pi_N = 1 \]
\[\pi_C = 0 \]
Gene structure in procaryotes

From “An Introduction to HMMs for Biological Sequences”, A. Krogh, 1998
Gene structure in procaryotes

N: non-coding

\[\pi_N = 1 \]
\[\pi_C = 0 \]
Gene structure in procaryotes

Gene finding

- Select initial model structure (e.g. as done here)

- Select model parameters by training. Either “by counting” from examples of (X,Z)'s, i.e. genes with known structure, or by EM- or Viterbi-training from examples of X, i.e. sequences which are known to contain a gene.

- Given a new sequence X, predict its gene structure using the Viterbi algorithm for finding the most likely sequence of underlying latent states, i.e. its gene structure
Example – Gene finding

Gene finding

* Select initial model structure (e.g. as done here)
* Select model parameters by training. Either “by counting” from examples of \((X,Z)\)'s, i.e. genes with known structure, or by EM- or Viterbi-training from examples of \(X\), i.e. sequences which are known to contain a gene.

Even more biology

* There can be genes in both directions (and overlapping)
* There are more possible start-codons \(\text{atg, gtg, and ttg}\)
* Internal codons cannot be start- or stop-codons
* And a lot more ...

\[\pi_N = 1 \]
\[\pi_C = 0 \]
DNA

AGT GAT AAT GTA
\(e'_1, e'_2, e'_3\) \(s'_1, s'_2, s'_3\)

TTA CAT ATG TAA
CTA TGA TAG TGA

ATG TAA TAG TGA

5' end

Adenine Thymine

5' end

Phosphate-deoxyribose backbone

Sugar phosphate backbone

3' end

U.S. National Library of Medicine
Even more biology

There can be genes in both directions

\[\pi_N = 1 \]
\[\pi_C = 0 \]
Example – 7-state HMM

Observable: \{A, C, G, T\}, States: \{0, 1, 2, 3, 4, 5, 6\}

\[
\begin{array}{cccccccc}
0.00 & 0.00 & 0.90 & 0.10 & 0.00 & 0.00 & 0.00 & 0.00 \\
1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.05 & 0.90 & 0.05 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.10 & 0.90 & 0.00 & 0.00 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\end{array}
\]

\[
\begin{array}{cccccc}
0.30 & 0.25 & 0.25 & 0.20 & 0.20 & 0.35 \\
0.20 & 0.35 & 0.15 & 0.30 & 0.20 & 0.25 \\
0.40 & 0.15 & 0.20 & 0.25 & 0.25 & 0.25 \\
0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 \\
0.20 & 0.40 & 0.30 & 0.10 & 0.30 & 0.20 \\
0.30 & 0.20 & 0.30 & 0.20 & 0.30 & 0.20 \\
0.15 & 0.30 & 0.20 & 0.35 & 0.30 & 0.20 \\
\end{array}
\]

Graph representation of the 7-state HMM with transition probabilities between states and emission probabilities for observable nucleotides.
This model is also applicable for gene finding.

It does not model start- and stop-codons explicitly, but models that genes in both directions are a sequence of triplets.
Problem: From annotation to Z

DNA → TRANSCRIPTION → mRNA → TRANSLATION → protein

Biological facts
- The gene is a substring of the DNA sequence of A,C,G,T's
- The gene starts with a start-codon *atg*

Z: NNNCCCCCC...NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

X: acgatgcgc...gacgcga

\[\pi_N = 1 \]
\[\pi_C = 0 \]

A: >0 C: >0 G: >0 T: >0 N: non-coding
A: 1 C: 0 G: 0 T: 0 C: coding
A: 0 C: 0 G: 0 T: 1
A: 0 C: 0 G: 1 T: 0
A: >0 C: >0 G: >0 T: >0
Problem: From annotation to Z

Problem: The string $Z=\text{NNNCCCCC...}$ is not a proper sequence of states in the illustrated HMM, but it can easily be converted into one (because there in this case is a 1-1 matching between a sequence of Ns and Cs and a sequence of states).

$Z: \text{NNNCCCCC...}$

$X: \text{acgatgcgc...}$

\[\pi_N = 1 \]
\[\pi_C = 0 \]
Problem: From annotation to Z

Problem: The string \(Z = \text{NNNCCC} \ldots \) is not a proper sequence of states in the illustrated HMM, but it can easily be converted into one (because there is a 1-1 matching between a sequence of Ns and Cs and a sequence of states).

\[
\begin{align*}
\text{Z: } & \quad \text{NNNCCC} \ldots \\
\text{X: } & \quad \text{acgatgcgc} \ldots \\
\end{align*}
\]

\[
\begin{align*}
\pi_N &= 1 \\
\pi_C &= 0 \\
\end{align*}
\]
Evaluating performance

Nucleotide Level

![Diagram of nucleotide level evaluation]

REALITY

- TN (True Negative)
- FN (False Negative)
- TP (True Positive)
- FP (False Positive)

PREDICTION

- TN (True Negative)
- FN (False Negative)
- TP (True Positive)
- FP (False Positive)

Formulas

- **Sensitivity**

 \[S_n = \frac{TP}{TP + FN} \]

- **Specificity**

 \[S_p = \frac{TP}{TP + FP} \]

- **Correlation Coefficient**

 \[CC = \frac{(TP \times TN) - (FN \times FP)}{\sqrt{(TP + FN) \times (TN + FP) \times (TP + FP) \times (TN + FN)}} \]

- **Approximate Correlation**

 \[AC = (ACP - 0.5) \times 2 \]

References

- Burset and Guigo, 1996
compare_anns.py

Genome 6
Cs (tp=757332, fp=164766, tn=305197, fn=57217): Sn = 0.9298, Sp = 0.8213, AC = 0.6213
Rs (tp=715865, fp=127462, tn=304830, fn=57584): Sn = 0.9255, Sp = 0.8489, AC = 0.6603
Both (tp=1473197, fp=292228, tn=247613, fn=114801): Sn = 0.9277, Sp = 0.8345, AC = 0.4520

Genome 7
Cs (tp=868820, fp=236008, tn=517048, fn=79049): Sn = 0.9166, Sp = 0.7864, AC = 0.6285
Rs (tp=815026, fp=226580, tn=511963, fn=84134): Sn = 0.9064, Sp = 0.7825, AC = 0.6205
Both (tp=1683846, fp=462588, tn=268917, fn=163183): Sn = 0.9117, Sp = 0.7845, AC = 0.4529

Genome 8
Cs (tp=705403, fp=137180, tn=351159, fn=74782): Sn = 0.9041, Sp = 0.8372, AC = 0.6424
Rs (tp=607762, fp=169829, tn=351738, fn=74203): Sn = 0.8912, Sp = 0.7816, AC = 0.5865
Both (tp=1313165, fp=307009, tn=276956, fn=148985): Sn = 0.8981, Sp = 0.8105, AC = 0.4166

Genome 9
Cs (tp=776640, fp=203664, tn=340882, fn=88415): Sn = 0.8978, Sp = 0.7922, AC = 0.5550
Rs (tp=759048, fp=219786, tn=336181, fn=93116): Sn = 0.8907, Sp = 0.7755, AC = 0.5270
Both (tp=1535688, fp=423450, tn=276956, fn=181531): Sn = 0.8943, Sp = 0.7839, AC = 0.3122

Genome 10
Cs (tp=612457, fp=106124, tn=253878, fn=88014): Sn = 0.8744, Sp = 0.8523, AC = 0.5872
Rs (tp=371869, fp=138143, tn=291605, fn=50287): Sn = 0.8809, Sp = 0.7291, AC = 0.5707
Both (tp=984326, fp=244267, tn=203591, fn=138301): Sn = 0.8768, Sp = 0.8012, AC = 0.3640
Even more biology
There can be genes in both directions

\[\pi_N = 1 \]
\[\pi_C = 0 \]
Analysis of some genomes

Start-codon in normal genes:
ATG [8423, 'NCCC']
ATC [3, 'NCCC']
ATA [1, 'RCCC']
GTG [713, 'NCCC']
ATT [3, 'NCCC']
CTG [2, 'NCCC']
GTT [1, 'NCCC']
CTC [1, 'NCCC']
TTA [1, 'NCCC']
TTG [1020, 'NCCC']

Stop-codon in normal genes:
TAG [1949, 'CCCN']
TGA [1531, 'CCCN']
TAA [6686, 'CCCN']

Reversed stop-codon in reversed genes:
TTA (reverse-complement: TAA) [6596, 'NRRR']
CTA (reverse-complement: TAG) [2014, 'NRRR']
TCA (reverse-complement: TGA) [1148, 'NRRR']

Reversed start-codon in reversed genes:
TAT (reverse-complement: ATA) [2, 'RRRN']
ATG (reverse-complement: CAT) [1, 'RRRN']
GAT (reverse-complement: ATC) [1, 'RRRN']
CAT (reverse-complement: ATG) [8077, 'RRRN']
AAT (reverse-complement: ATT) [4, 'RRRN']
TAC (reverse-complement: GTA) [1, 'RRRN']
CAC (reverse-complement: GTG) [715, 'RRRN']
CAA (reverse-complement: TTG) [953, 'RRRN']
CAG (reverse-complement: CTG) [4, 'RRRN']

Length of genome1: 1852441 (1852441)
Length of genome2: 2211485 (2211485)
Length of genome3: 2499279 (2499279)
Length of genome4: 1796846 (1796846)
Length of genome5: 2685015 (2685015)
Length of genome6: 2127839 (2127839)
Length of genome7: 2742531 (2742531)
Length of genome8: 2046115 (2046115)
Length of genome9: 2388435 (2388435)
Length of genome10: 1570485 (1570485)
Length of genome11: 2096309 (2096309)