Comparison of trees
Different trees for same set of species
Robinson-Foulds distance
Any edge e in a tree T corresponds to a split $U|V$ of the species into two disjoint sets. An **internal edge** corresponds to a **non-trivial split**.

Non-trivial splits in T_1:
- ADF | BCEG
- DF | ABCEG
- BC | ADEFG
- EG | ABCDF

Non-trivial splits in T_2:
- ADF | BCEG
- AD | BCEFG
- BC | ADEFG
Split-dist(T_1, T_2) := “number of splits in T_1 not in T_2”

RF-dist(T_1, T_2) := Split-dist(T_1, T_2) + Split-dist(T_2, T_1)

:= “number of splits in T_1 not in T_2” + “number of splits in T_2 not in T_1”

:= “number of splits not found in both trees”

Any edge e in a tree T corresponds to a split $U|V$ of the species into two disjoint sets.

An internal edge corresponds to a non-trivial split.

Non-trivial splits in T_1:
ADF | BCEG
DF | ABCEG
BC | ADEFG
EG | ABCDF

Non-trivial splits in T_2:
ADF | BCEG
AD | BCEFG
BC | ADEFG
Split-dist\((T_1, T_2)\) := “number of splits in \(T_1\) not in \(T_2\)”

RF-dist\((T_1, T_2)\) := Split-dist\((T_1, T_2)\) + Split-dist\((T_2, T_1)\)

\(= \) “number of splits in \(T_1\) not in \(T_2\)” + “number of splits in \(T_2\) not in \(T_1\)”

\(= \) “number of splits not found in both trees”

Any edge \(e\) in a tree \(T\) corresponds to a split \(U|V\) of the species into two disjoint sets

An internal edge corresponds to a non-trivial split

Non-trivial splits in \(T_1\):
- ADF | BCEG
- DF | ABCEG
- BC | ADEFG
- EG | ABCDF

Non-trivial splits in \(T_2\):
- ADF | BCEG
- AD | BCEFG
- BC | ADEFG

If we can find “shared splits” then we can compute RF-distance
Split-dist(T_1, T_2) := “number of splits in T_1 not in T_2”

RF-dist(T_1, T_2) := Split-dist(T_1, T_2) + Split-dist(T_2, T_1)

:= “number of splits in T_1 not in T_2” + “number of splits in T_2 not in T_1”

:= “number of splits not found in both trees”

Any edge e in a tree T corresponds to a split $U | V$ of the species into two disjoint sets

An internal edge corresponds to a non-trivial split

Split-dist(T_1, T_2) := 2

Split-dist(T_2, T_1) := 1

RF-dist(T_1, T_2) := 3

If we can find “shared splits” then we can compute RF-distance
Split-dist\((T_1, T_2) \) := “number of splits in \(T_1 \) not in \(T_2 \)”

RF-dist\((T_1, T_2) \) := Split-dist\((T_1, T_2) \) + Split-dist\((T_2, T_1) \)

:= “number of splits in \(T_1 \) not in \(T_2 \)” + “number of splits in \(T_2 \) not in \(T_1 \)”

:= “number of splits not found in both trees”

Note: Split-dist is symmetric if the two trees are binary. Why?

Any edge \(e \) in a tree \(T \) corresponds to a split \(U \mid V \) of the species into two disjoint sets.

An internal edge corresponds to a non-trivial split.

\begin{align*}
\text{Split-dist}(T_1, T_2) & \quad := \quad 2 \\
\text{Split-dist}(T_2, T_1) & \quad := \quad 1 \\
\text{RF-dist}(T_1, T_2) & \quad := \quad 3
\end{align*}

Non-trivial splits in \(T_1 \):

ADF \mid BCEG
DF \mid ABCEG
BC \mid ADEFG
EG \mid ABCDF

Non-trivial splits in \(T_2 \):

ADF \mid BCEG
AD \mid BCEFG
BC \mid ADEFG

If we can find “shared splits” then we can compute RF-distance.
Computing the RF-distance

Input: Two unrooted trees, T_1 and T_2, with n identical leaves

Algorithm:

```
shared = 0
for each split $U \mid V$ in $T_1$ and $U' \mid V'$ in $T_2$ do
    if $U \mid V == U' \mid V'$ then
        shared = shared + 1
    endif
end
return RF-Dist = “number of splits in $T_1$ and $T_2” - 2 * shared
```
Computing the RF-distance

Input: Two unrooted trees, T_1 and T_2, with n identical leaves

Algorithm:

1. $\text{shared} = 0$
2. **for** each split $U \mid V$ in T_1 and $U' \mid V'$ in T_2 **do**
 1. **if** $U \mid V == U' \mid V'$ **then**
 1. $\text{shared} = \text{shared} + 1$
 2. **endif**
3. **end**

return $\text{RF-Dist} = \text{“number of splits in } T_1 \text{ and } T_2 \text{” - 2 * shared}$

Running time: $O(n^2 \times \text{“time it takes to decide } U \mid V == U' \mid V' \text{”})$

By using time and space $O(n^2)$ for preprocessing $U \mid V == U' \mid V'$ can be decided in time $O(1)$
Details about deciding $U | V = U' | V'$
Deciding if $U \mid V = U' \mid V'$

We consider every edge e in T and e' in T' as two directed edges...
Deciding if $U \mid V == U' \mid V'$

Assume that we have a table T s.t.:

$$T(\rightarrow, \rightarrow') := |V \cap V'|$$

... then $U \cap V \neq U' \cap V'$ can be decided in time $O(t)$...

$$u \cap V = u' \cap V' \iff |V \cap V'| = |V|$$

(else $|V \cap V'| + 1 = u' \cap V' = u$)
Deciding if $U | V == U' | V'$

If we assume that $1, 2, 1', 2'$ are non-empty, i.e. e and e' are internal edges in T and T', we get:

$$V \cap V' = (1 \cup 2) \cap (1' \cup 2')$$

$$= (1 \cup 2) \cap 1' \cup (1 \cup 2) \cap 2'$$

$$= (1 \cap 1') \cup (2 \cap 1') \cup (1 \cap 2') \cup (2 \cap 2')$$
Deciding if $U \mid V == U' \mid V'$

Since $1 \cap 2 = 1' \cap 2' = \emptyset$, we get:

$$|V \cap V'| = |1 \cap 1'| + |1 \cap 2'| + |2 \cap 1'| + |2 \cap 2'|$$

... a simple recursive formulation; the table $T[e, e']$ of size $O(n^2)$ can be computed in time: $O(n^2)$ using dynamic programming....
Deciding if $U \mid V = U' \mid V'$

Special case:

\[T[e, e'] = 1 \vee n_{e'} = T[e, e_2'] + T[e, e_2'] \]

Base case:

\[e \rightarrow v \quad \quad e' \rightarrow v' \]

\[T[e, e'] = \begin{cases} 1 & \text{if } v=v' \\ 0 & \text{otherwise} \end{cases} \]
Other ideas? Splits as bit-vectors

Any edge e in a tree T corresponds to a split $U|V$ of the species into two disjoint sets.

An **internal edge** corresponds to a **non-trivial split**

<table>
<thead>
<tr>
<th>Non-trivial splits in T_1:</th>
<th>Non-trivial splits in T_2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFD</td>
<td>BCEG</td>
</tr>
<tr>
<td>DF</td>
<td>ABCEG</td>
</tr>
<tr>
<td>BC</td>
<td>ADEFG</td>
</tr>
</tbody>
</table>
Other ideas? Splits as bit-vectors

Algorithm for “counting number of shared splits”

Step 1: Collect bit-vectors

Step 2: Sort bit-vectors using radix-sort

0000101
0001010
0110000
0110000
1001000
1001010
1001010

Step 3: Count “number of shared splits” as “number of doublets”

Time and space?

Non-trivial splits in T_1:

- AFD | BCEG
- DF | ABCEG
- BC | ADEFG
- EG | ABCDF

Non-trivial splits in T_2:

- ADF | BCEG
- AD | BCEFG
- BC | ADEFG

Any edge in a tree T corresponds to a split $U \mid V$ of the species into two disjoint sets.
Other ideas? Splits as bit-vectors

Algorithm for “counting number of shared splits”

Step 1: Collect bit-vectors. $O(n \times \text{“size of bit vector”})$

Step 2: Sort bit-vectors using radix-sort $O(n \times \text{“size of bit vector”})$

Step 3: Count “number of shared splits” as “number of doublets”

Time and space? $O(n \times \text{“size of bit vector”})$

Non-trivial splits in T_1:
AFD | BCEG 1001010
DF | ABCEG 0001010
BC | ADEFG 0110000
EG | ABCDF 0000101

Non-trivial splits in T_2:
ADF | BCEG 1001010
AD | BCEFG 1001000
BC | ADEFG 0110000
EG | ABCDF 0000101
Other ideas? Splits as bit-vectors

Algorithm for “counting number of shared splits”

<table>
<thead>
<tr>
<th>Any edge in a tree T corresponds to a split U</th>
<th>V of the species into two disjoint sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-trivial splits in T 1:</td>
<td></td>
</tr>
<tr>
<td>AFD</td>
<td>BCEG 1001010</td>
</tr>
<tr>
<td>DF</td>
<td>ABCEG 0001010</td>
</tr>
<tr>
<td>BC</td>
<td>ADEFG 0110000</td>
</tr>
<tr>
<td>EG</td>
<td>ABCDF 0000101</td>
</tr>
<tr>
<td>Non-trivial splits in T 2:</td>
<td></td>
</tr>
<tr>
<td>AFD</td>
<td>BCEG 1001010</td>
</tr>
<tr>
<td>AD</td>
<td>BCEFG 1001000</td>
</tr>
<tr>
<td>BC</td>
<td>ADEFG 0110000</td>
</tr>
<tr>
<td>EG</td>
<td>ABCDF 0000101</td>
</tr>
</tbody>
</table>

Algorithm for “counting number of shared splits”

Step 1: Collect bit-vectors. $O(n \times \text{“size of bit vector”})$

Step 2: Sort bit-vectors using radix-sort $O(n \times \text{“size of bit vector”})$

Step 3: Count “number of shared splits” as “number of doublets”

Time and space? $O(n \times \text{“size of bit vector”})$

The bit vector of n bit can be store in $n / \log n \ “\text{machine words}”$
Computing the RF-distance

- Using table of “intersections sizes” in time $O(n^2)$

- Using bit vectors in time $O(n \times \text{“size of bit vector”})$

- Day's algorithm from 1985 computes the RF-distance in time $O(n)$!!
Day's algorithm (my explanation)

Step 1: Root the two input trees at the same leaf (here leaf no. 1). Time $O(n)$.

Input trees:

After step 1:
Day's algorithm (my explanation)

Step 2: Make a **Depth-First numbering** of the leaves in T_1. Time $O(n)$.
Step 3: Rename the leaves in T_2 cf. the DF-numbering of leaves in T_1. Time $O(n)$.
Day's algorithm (my explanation)

Step 4: 1) Annotate internal nodes in T_1 with their DF-intervals (the DF-number of the leaves in a subtree is an interval per construction. 2) For each internal node in T_2 find (min. DF-leaf, max. DF-leaf, size of subtree), if “max – min + 1 = size” then the subtree is an interval of DF-leaves. Annotate the internal node in T_2 with this interval. Time $O(n)$.
Day's algorithm (my explanation)

Step 5: Note that every DF-interval in T_1 which is also in T_2 is a shared split. Sort the intervals and identify doublets. *Time $O(n)$ by simple radix-sort.*

Step 4: 1) Annotate internal nodes in T_1 with their DF-intervals (the DF-number of the leaves in a subtree is an interval per construction). 2) For each internal node in T_2 find (min. DF-leaf, max. DF-leaf, size of subtree), if “max – min + 1 = size” then the subtree is an interval of DF-leaves. Annotate the internal node in T_2 with this interval. *Time $O(n)$.*
Quartet distance
Quartets and quartet distance

Quartet: Four named species in an unrooted tree

Quartet topology: The topology of the quartet induced by the tree

Quartet distance: The number of quartets that don't have the same topology in the two trees
Quartets and quartet distance
Quartets and quartet distance

A
B
C
D

A
B
C
D

A
B
C
D

A
B
D
E

A
B
C

A
B
D
E

ABCD

x
Quartets and quartet distance
Quartets and quartet distance
Quartets and quartet distance
Quartets and quartet distance

ABCD
ABCE
ABDE
ACDE
BCDE
Quartets and quartet distance

Quartet distance $= \binom{5}{4} - 3 = 5 - 3 = 2$
Previous work

C. R. Doucette. An efficient algorithm to compute quartet dissimilarity measures. O(\(n^3\)) Bachelor of Science (Honours) Dissertation. Memorial University of Newfoundland, 1985

Details about the $O(n^2)$ algorithm
Computing the quartet distance

We associate quartet ab|cd in T and T' with the oriented edge e s.t.:
Computing the quartet distance

Algorithm: For every pair of oriented edges \((e, e')\) in \(T\) and \(T'\), we count the number of quartets associated to \(e\) in \(T\), which is also associated to \(e'\) in \(T'\).

\[
\text{Count}(e, e') = |A_{NN} l \cdot |B_{NN} l \cdot \left(\binom{1 \cup c \cup c'}{2}\right) + |A_{NN} l \cdot |B_{NN} l \cdot \left(\binom{1 \cup c \cup c'}{2}\right)
\]
Computing the quartet distance

Observe: every shared quartet ab1cd, is counted twice....

1. \[\text{Diagram 1} \]

2. \[\text{Diagram 2} \]

so...
Computing the quartet distance

\[\text{Quartet Dist:} = \binom{n}{4} - \frac{1}{2} \sum_{e,e'} \text{Count}(e,e') \]

Running time?

\(O(n^2) \)
Comparing partially resolved trees
Comparing partially resolved trees

The ideas of Tsang's $O(n^2)$ time algorithm for fully resolved tree can be generalized. An immediate generalization yields and $O(n^2d^4)$ time algorithm. Doucette's work from 1985 can be used for a $O(n^3)$ time algorithm ...
Idea: Iterate over all pairs of edges (or nodes) in the two trees, and count for each pair how many *associated quartets* are shared. The problem is to define “associated” such each quartet is counted as most once ...

Different solutions

<table>
<thead>
<tr>
<th>Type</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center based</td>
<td>$O(n^3)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Edge based</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>Edge based</td>
<td>$O(n+</td>
<td>V</td>
</tr>
<tr>
<td>Node based</td>
<td>$O(n+</td>
<td>V</td>
</tr>
</tbody>
</table>

- n is the number of species/leaves
- $|V|, |V'|$ are number of internal nodes in T and T'
- id, id' are internal degree of T and T'

"worst case"-tree: $|V|=id=O(n)$
A sub-cubic time algorithm for computing the quartet distance between two general trees.

Thomas Mailund, Jesper Nielsen and Christian N.S. Pedersen

In this paper we develop an $O(n^{2+})$, where $\gamma = (1/2)$ and $O(n^\gamma)$ is the time it takes to multiply two $n \times n$ matrices. Using the Coppersmith-Winograd algorithm, where $\gamma = 2.376$, this yields a running time of $O(n^{2.688})$. The running time is thus independent of the degrees of the inner nodes of the input trees, and this is the first sub-cubic time algorithm with this property.

<table>
<thead>
<tr>
<th>Type</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center based</td>
<td>$O(n^3)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Edge based</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>Edge based</td>
<td>$O(n+</td>
<td>V</td>
</tr>
<tr>
<td>Node based</td>
<td>$O(n+</td>
<td>V</td>
</tr>
</tbody>
</table>

- n is the number of species/leaves
- $|V|$, $|V'|$ are number of internal nodes in T and T'
- id, id' are internal degree of T and T'

"worst case"-tree

$|V|=\text{id}=O(n)$
A sub-cubic time algorithm for computing the quartet distance between two general trees (2011).

Thomas Mailund, Jesper Nielsen and Christian N.S. Pedersen

In this paper we develop an $O(n^{2+\epsilon})$, where $\epsilon = (1/2)$ and $O(n^2)$ is the time it takes to multiply two $n \times n$ matrices. Using the Coppersmith-Winograd algorithm, where $\epsilon = 2.376$, this yields a running time of $O(n^{2.688})$. The running time is then independent of the degrees of the inner nodes of the input trees.

Efficient Algorithms for Computing the Triplet and Quartet Distance Between Trees of Arbitrary Degree (2012).

Gerth Brodal, Rolf Fagerberg, Thomas Mailund, Christian N.S. Pedersen and Andreas Sand

In this paper we develop an $O(n \log n)$ time algorithm for computing the triplet distance between trees of arbitrary degree, and a $O(dn \log n)$ time algorithm for computing the quartet distance between trees of degree d.

- n is the number of species/leaves
- $|V|, |V'|$ are number of internal nodes in T and T'
- id, id' are internal degree of T and T'
Other kinds of distances?
Subtree-Prune-Regraft

\[\text{SPR-Dist}(T_1, T_2) = \text{Minimum number of SPR-op's that transform } T_1 \text{ into } T_2 \]

NP-complete for unrooted binary trees allowing unrestricted SPR-operations ...
Nearest-Neighbor interchange

\[
\text{NNI-Dist}(T_1, T_2) = \text{Minimum number of NNI-op's that transform } T_1 \text{ into } T_2
\]

NP-complete for unrooted binary trees ...